Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HATS off to combat asthma

05.12.2007
Two University of Nottingham studies exploring the causes and treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD) could lead to the development of drugs to battle these debilitating conditions.

The Division of Respiratory Medicine at the University has been awarded a total of £1.24m in grants to study respiratory disease. The Wellcome Trust has awarded Prof Alan Knox and Dr Linhua Pang £700,000 to research transcriptional control of inflammatory gene expression in asthma — allowing the team to examine the part inflammatory mediators play in the way asthma sufferers react to allergens.

A second grant of £540,000 from MRC to Prof Knox and his colleagues Prof Peter Fischer and Prof David Heery will explore histone acetyl transferase (HAT) inhibitors in asthma and COPD. This study will investigate a bank of plant extracts at the University of Strathclyde, seeking compounds that could combat the intercellular processes that result in the symptoms of asthma and COPD — inflammation of the airways which can lead to coughing, breathlessness and increased chest infections.

Though they are different diseases, asthma and COPD affect the human body in a similar way. In asthma, allergens irritate the lungs, in COPD, this is done by cigarette smoke. This irritation inflames the sufferer’s airways, which the muscles then close, creating a narrowing effect.

Research done at the University over the past 15 years has found that the muscle layer in the airway is more complex than has traditionally been thought. As well as going into spasm during asthma and COPD attacks the muscle layer produces a wide range of mediators and cytokines — proteins that act as chemical signallers when it comes into contact with allergens or cigarette smoke. In asthma and COPD sufferers, these proteins are produced by stimulation of airway muscle cell walls in the lungs, releasing intracellular signalling proteins called ‘transcription factors’ which alter the DNA of the cell and activate messenger RNA. It is these ‘transcription factors’ which activate the inflammation by causing release of mediators and cytokines.

The activation status of these transcription factors is determined by the balance between two competing groups of enzymes called histone acetyl transferase (HATs) and histone deacetylases (HDACs). In asthma and COPD sufferers the balance is altered so that the HATs are activated and HDACs suppressed with the result that inflammation is switched on. The investigators at the University think that if the balance could be restored by inactivating HATs then the mediators and cytokines will be switched off and inflammation dampened down.

By exploring plant extracts that may reduce the activation of HATs within airway cells, the researchers may isolate compounds that could be used to suppress inflammation in respiratory disease. Any drug successfully synthesised from such compounds could potentially revolutionise the treatment of respiratory disease. There is also the potential to treat other inflammatory diseases, such as rheumatoid arthritis and Inflammatory Bowel Disease.

Professor Alan Knox, of the Division of Respiratory Medicine at the University, said: “The majority of people with asthma have access to reasonably good anti-inflammatory treatments that can keep their conditions under control. But up to 20 per cent of sufferers don’t respond well to the treatments currently available. And when it comes to COPD, anti-inflammatory drugs aren’t very effective.

“By tracking the process which triggers the inflammation and then identifying the compounds that inhibit or activate these crucial enzymes, we could put into motion the development of a drug which could have a huge impact on the lives of those suffering from respiratory and other inflammatory diseases.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: COPD HAT Respiratory Treatment compounds inflammation inflammatory sufferers

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>