Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HATS off to combat asthma

Two University of Nottingham studies exploring the causes and treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD) could lead to the development of drugs to battle these debilitating conditions.

The Division of Respiratory Medicine at the University has been awarded a total of £1.24m in grants to study respiratory disease. The Wellcome Trust has awarded Prof Alan Knox and Dr Linhua Pang £700,000 to research transcriptional control of inflammatory gene expression in asthma — allowing the team to examine the part inflammatory mediators play in the way asthma sufferers react to allergens.

A second grant of £540,000 from MRC to Prof Knox and his colleagues Prof Peter Fischer and Prof David Heery will explore histone acetyl transferase (HAT) inhibitors in asthma and COPD. This study will investigate a bank of plant extracts at the University of Strathclyde, seeking compounds that could combat the intercellular processes that result in the symptoms of asthma and COPD — inflammation of the airways which can lead to coughing, breathlessness and increased chest infections.

Though they are different diseases, asthma and COPD affect the human body in a similar way. In asthma, allergens irritate the lungs, in COPD, this is done by cigarette smoke. This irritation inflames the sufferer’s airways, which the muscles then close, creating a narrowing effect.

Research done at the University over the past 15 years has found that the muscle layer in the airway is more complex than has traditionally been thought. As well as going into spasm during asthma and COPD attacks the muscle layer produces a wide range of mediators and cytokines — proteins that act as chemical signallers when it comes into contact with allergens or cigarette smoke. In asthma and COPD sufferers, these proteins are produced by stimulation of airway muscle cell walls in the lungs, releasing intracellular signalling proteins called ‘transcription factors’ which alter the DNA of the cell and activate messenger RNA. It is these ‘transcription factors’ which activate the inflammation by causing release of mediators and cytokines.

The activation status of these transcription factors is determined by the balance between two competing groups of enzymes called histone acetyl transferase (HATs) and histone deacetylases (HDACs). In asthma and COPD sufferers the balance is altered so that the HATs are activated and HDACs suppressed with the result that inflammation is switched on. The investigators at the University think that if the balance could be restored by inactivating HATs then the mediators and cytokines will be switched off and inflammation dampened down.

By exploring plant extracts that may reduce the activation of HATs within airway cells, the researchers may isolate compounds that could be used to suppress inflammation in respiratory disease. Any drug successfully synthesised from such compounds could potentially revolutionise the treatment of respiratory disease. There is also the potential to treat other inflammatory diseases, such as rheumatoid arthritis and Inflammatory Bowel Disease.

Professor Alan Knox, of the Division of Respiratory Medicine at the University, said: “The majority of people with asthma have access to reasonably good anti-inflammatory treatments that can keep their conditions under control. But up to 20 per cent of sufferers don’t respond well to the treatments currently available. And when it comes to COPD, anti-inflammatory drugs aren’t very effective.

“By tracking the process which triggers the inflammation and then identifying the compounds that inhibit or activate these crucial enzymes, we could put into motion the development of a drug which could have a huge impact on the lives of those suffering from respiratory and other inflammatory diseases.”

Emma Thorne | alfa
Further information:

Further reports about: COPD HAT Respiratory Treatment compounds inflammation inflammatory sufferers

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>