Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Mimetism As An Enzyme Inhibitor

05.12.2007
Over time viruses have developed a wide range of varied strategies to ensure their survival and proliferation inside their target cells.

These strategies could be considered intelligent, calculated actions, since viruses can either take over some of the cell’s components and use them for their own benefit or deactivate particular functions of the cell in order to allow for a more effective and trouble free infection process.

This very interesting subject has been the focus of the investigations of the “Centro de Biología Molecular Severo Ochoa” (CBMSO; UAM-CSIC) working together with the “Centro de Investigaciones Biológicas (CIB; CSIC)”.

The outcome of their research on viral strategies that affect cellular functions has recently been published.

... more about:
»DNA »Salas »UDG »enzyme »p56

For several years, Professor Margarita Salas from the CBMSO has dedicated part of her research efforts to the study of the replication mechanism of virus 29, which infects the Bacillus subtilis, harmless bacteria commonly found in the soil. Her work has contributed towards a better understanding of the interactions between the viruses and their target cells at a molecular level. In an article published last year in the Journal of Biological Chemistry (Vol. 281: 7068-7074; 2006), Professor Salas and her team described an important discovery: the protein p56 of virus 29 inhibits the activity of the cellular protein uracil-DNA-glycosylase (UDG). It is known that this enzyme, present in all living organisms, is involved in the DNA repair processes and hence, it avoids mutations in the cellular genome.

In order to carry out its function, the UDG enzyme first identifies the damaged DNA by locating uracil residues and then attaches itself to the DNA to repair it. Recently, Professor Salas team, in collaboration with the research group managed by Professor Manuel Espinosa from the CIB, have published their new discoveries in Nucleic Acids Research (Vol. 35: 5393-5401; 2007), recounting how the viral protein p56 manages to inhibit the activity of the UDG enzyme. Their experiments show that the protein p56 conceals the part of the UDG enzyme that interacts with the damaged DNA so that there is no possibility of attachment.

The protein p56 might accomplish this by imitating the structural characteristics of DNA in order to mislead the UDG enzyme. If the theory is corroborated, this would be another case of molecular mimesis as an enzyme inhibitor technique. The future work by Professor Salas and her team will be dedicated to substantiating this hypothesis.

Oficina de Cultura Científica | alfa
Further information:
http://dx.doi.org/10.1093/nar/gkm584

Further reports about: DNA Salas UDG enzyme p56

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>