Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could hydrogen sulfide hold the key to a long life?

04.12.2007
Study finds 'rotten egg' chemical increases life span and heat tolerance in worms

Hydrogen sulfide, or H2S, the chemical that gives rotten eggs their sulfurous stench – and the same compound that researchers at Fred Hutchinson Cancer Research Center successfully have used to put mice into a state of reversible metabolic hibernation – has now been shown to significantly increase life span and heat tolerance in the nematode worm, or C. elegans.

These findings by Mark Roth, Ph.D., a member of the Center’s Basic Sciences Division, and Dana Miller, Ph.D., a postdoctoral research fellow in Roth’s lab, appear in the PNAS Online Early Edition, a publication of the Proceedings of the National Academy of Sciences of the United States of America.

In an effort to understand the mechanisms by which hydrogen sulfide induces hibernation in mice, the researchers turned to the tiny nematode, a workhorse of laboratory science because its biology is similar in many respects that of humans. For example, like humans, nematodes have a central nervous system and the ability to reproduce. The worms also are ideally suited for studying life span, because they normally live for only two to three weeks.

... more about:
»H2S »Hydrogen »Influence »activity »nematode »sulfide »untreated

The researchers found, to their surprise, that nematodes that were raised in a carefully controlled atmosphere with low concentrations of H2S (50 parts per million in room air) did not hibernate. Instead, their metabolism and reproductive activity remained normal, their life span increased and they became more tolerant to heat than untreated worms.

The H2S-exposed worms lived eight times longer than untreated worms when moved from normal room air (22 C or 70 F) to a high-temperature environment (35 degrees Celsius, or 95 F). Roth and colleagues replicated these results in 15 independent experiments.

“Although the maximum extension of survival time varied between experiments, the effect was quite robust. On average, 77 percent of the worms exposed to H2S outlived the untreated worms,” Roth said. The mean life span of worms grown in an atmosphere laced with hydrogen sulfide was 9.6 days greater than that of the untreated population, a longevity increase of 70 percent.

Most genes that influence life span in C. elegans act on one of three genetic pathways: those that control insulin/IGF (insulin growth factor) signaling, those that control mitochondrial function and those that modulate the effects of dietary restriction.

Roth and colleagues ruled out hydrogen sulfide’s influence on each of these pathways. Instead, they suspect it acts through a different mechanism. One theory is that exposure to H2S naturally regulates the activity of a gene called SIR-2.1, which has been shown to influence life span in many organisms, including the nematode. Previous studies have found that over-expression of this gene increases the longevity of C. elegans by 18 percent to 20 percent.

“Further research into the genetic mechanisms that influence H2S-induced changes in nematodes may reveal similar mechanisms in higher organisms, including humans, with potentially wide-ranging implications in both basic research and clinical practice,” Roth said. For example, understanding how H2S affects physiology in animals may lead to the development of drugs that could delay the onset of age-related diseases in humans such as cancer, Alzheimer’s and heart disease.

Roth’s hibernation research made headlines worldwide in April 2005 when he was the first to show that exposing mice to minute amounts of hydrogen sulfide could induce a state of reversible “hibernation on demand,” dramatically reducing their core body temperature, respiration and need for oxygen. Roth envisions a future in which similar techniques could be used to “buy time” for critically ill patients who otherwise would face injury and death from insufficient blood and oxygen supply to organs and tissues.

Roth hypothesizes that H2S, a chemical normally produced in humans and animals, may help regulate body temperature and metabolic activity. Hydrogen sulfide is similar to oxygen at the molecular level because it binds at many of the same proteins. As a result, H2S competes for and interferes with the body’s ability to use oxygen for energy production – a process within the cell’s power-generating machinery called oxidative phosphorylation.

The inhibition of this function, in turn, is what Roth and colleagues believe causes organisms such as mice to shut down metabolically and enter a hibernation-like state pending re-exposure to normal room air, after which they quickly regain normal function and metabolic activity with no long-term negative effects.

Kristen Lidke Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

Further reports about: H2S Hydrogen Influence activity nematode sulfide untreated

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>