Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT sculpts 3D particles with light

03.12.2007
Medical applications could include diagnostics, tissue engineering

MIT engineers have used ultraviolet light to sculpt three-dimensional microparticles that could have many applications in medical diagnostics and tissue engineering. For example, they could be designed to act as probes to detect certain molecules, such as DNA, or to release drugs or nutrients.

The new technique offers unprecedented control over the size, shape and texture of the particles. It also allows researchers to design particles with specific chemical properties, such as porosity (a measure of the void space in a material that can affect how fast different molecules can diffuse through the particles).

“With this method, you can rationally design particles, and precisely place chemical properties,” said Patrick Doyle, associate professor of chemical engineering. Doyle is one of the authors of a paper on the work that will appear in the Dec. 3 issue of the journal Angewandte Chemie, published by the German Chemical Society.

... more about:
»Control »Engineering »LIGHT »Mask »nutrient »size

The research team started with a method that Doyle and his students reported in a 2006 issue of Nature Materials to create two- dimensional particles. Called continuous flow lithography, this approach allows shapes to be imprinted onto flowing streams of liquid polymers. Wherever pulses of ultraviolet light strike the flowing stream of small monomeric building blocks, a reaction is set off that forms a solid polymeric particle. They have now modified that method to add three-dimensionality.

This process can create particles very rapidly: Speeds range from 1,000 to 10,000 particles per second, depending on the size and shape of the particles. The particles range in size from about a millionth of a meter to a millimeter.

The team's new process works by shining ultraviolet light through two transparency masks, which define and focus the light before it reaches the flowing monomers. The first mask, which controls the size and shape of the particles, is part of the technique reported last year by Doyle and his students. The second mask, which is based on MIT professor Edwin Thomas' work in multibeam lithography, adds three- dimensional texture and other physical traits, such as porosity.

The collaboration sprung from a conversation between Ji-Hyun Jang, a postdoctoral associate in Thomas' lab, and Dhananjay Dendukuri, a recent Ph.D. recipient in Doyle's lab, who are also authors on the paper.

“It's very easy to integrate the (second) phase mask into the microfluidic apparatus,” said Thomas, Morris Cohen Professor of Materials Science and Engineering and head of the Department of Materials Science and Engineering. “Professor Doyle was controlling the overall shape, and now what we're doing is controlling these inner labyrinth networks.”

Adding inner texture is desirable because it increases the particles'
surface-to-volume ratio, which means if the particle is loaded with probes, there are more potential binding sites for target molecules.

In a paper published in Science earlier this year, Doyle and MIT graduate student Daniel Pregibon showed that the particles can be used as probes to identify DNA and other molecules.

Other applications for the particles include tissue engineering. For example, they could form a scaffold that would both provide structural support for growing cells and release growth factors and other nutrients. The particles can be designed so diffusion occurs in a particular direction, allowing researchers to control the direction of nutrient flow.

Alan Hatton, the Ralph Landau Professor of Chemical Engineering Practice, is also an author on the paper.

This research was funded by the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Control Engineering LIGHT Mask nutrient size

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>