Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hotspots found for chromosome gene swapping

03.12.2007
Work will lead to a better understanding of chromosome abnormalities and birth defects

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead Fellow Andreas Hochwagen. This work may lead to a better understanding of developmental chromosome abnormalities and birth defects.

Meiosis is a type of cell division that produces cells with only one copy of each chromosome—spores in yeast, and eggs and sperm in higher organisms.

During meiosis, chromosome pairs line up in the middle of the cell. The chromosome pairs are then pulled apart, with complete copies of all of the chromosomes ending up at opposite sides of the cell. To ensure that the chromosomes align properly in the middle of the cell, the chromosomes crossover—swap certain sections of genes. Without the crossovers, the chromosomes could misalign and both copies of a chromosome could end up in one cell. When this happens, the cells die or suffer from severe genetic problems, such as Down syndrome.

... more about:
»Blitzblau »Chromosome »DSB »Telomere »birth defect »breaks

Before a crossover can occur at a given site, both strands of a chromosome’s DNA helix must be broken. About half of these double-strand DNA breaks (DSBs) are processed to form crossovers, and the rest are resealed to restore the original chromosomes. The final number of crossovers is relatively small and scientists have long wondered how cells ensure that even the smallest chromosomes undergo at least one crossover. Indeed, in almost half of Down’s Syndrome cases, chromosome 21, one of the smallest human chromosomes, failed to form a crossover in one of the parents.

In a paper published online in Current Biology on November 29, Massachusetts Institute of Technology graduate student Hannah Blitzblau suggests that part of the answer lies in where DSBs are formed. Blitzblau has shown that these DSBs are not scattered randomly throughout the chromosomes, but occur most frequently in a specific band near telomeres, the end caps of chromosomes. When telomeres are spliced into the central part of a chromosome, this DSB “hotspot” effect is still seen at the same distance from the new telomeres.

“This is a simple mechanism for making sure that all chromosomes, even the shortest ones, have the crossovers required for meiosis,” says Blitzbau. “If the breaks occurred randomly, the smallest chromosomes often wouldn’t have any crossovers.”

In addition, Blitzblau showed that DSBs occur at high rates around the central part of the chromosome called the centromere, It was previously thought that DSBs and crossovers rarely occurred in this region.

“This is incredibly surprising,” says Hochwagen. “The chromosomes start the crossover process in the centromeres, but divert and reseal the breaks instead.”

Some of the earlier research had been done in mutant yeast strains; the Whitehead researchers say that the current work in non-mutant yeast is a more accurate representation of normal processes.

This research will help scientists understand chromosome events leading to infertility and birth defects. In addition, although this work does not touch on why some cells divide improperly, Blitzblau and Hochwagen anticipate that the technologies developed for this study will allow researchers to identify sites that are sensitive to breaks caused by agents, such as certain cancer drugs. The investigators are adapting the methods used in yeast to map break-sensitive sites in mammalian cells.

Eric Bender | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Blitzblau Chromosome DSB Telomere birth defect breaks

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>