Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hotspots found for chromosome gene swapping

03.12.2007
Work will lead to a better understanding of chromosome abnormalities and birth defects

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead Fellow Andreas Hochwagen. This work may lead to a better understanding of developmental chromosome abnormalities and birth defects.

Meiosis is a type of cell division that produces cells with only one copy of each chromosome—spores in yeast, and eggs and sperm in higher organisms.

During meiosis, chromosome pairs line up in the middle of the cell. The chromosome pairs are then pulled apart, with complete copies of all of the chromosomes ending up at opposite sides of the cell. To ensure that the chromosomes align properly in the middle of the cell, the chromosomes crossover—swap certain sections of genes. Without the crossovers, the chromosomes could misalign and both copies of a chromosome could end up in one cell. When this happens, the cells die or suffer from severe genetic problems, such as Down syndrome.

... more about:
»Blitzblau »Chromosome »DSB »Telomere »birth defect »breaks

Before a crossover can occur at a given site, both strands of a chromosome’s DNA helix must be broken. About half of these double-strand DNA breaks (DSBs) are processed to form crossovers, and the rest are resealed to restore the original chromosomes. The final number of crossovers is relatively small and scientists have long wondered how cells ensure that even the smallest chromosomes undergo at least one crossover. Indeed, in almost half of Down’s Syndrome cases, chromosome 21, one of the smallest human chromosomes, failed to form a crossover in one of the parents.

In a paper published online in Current Biology on November 29, Massachusetts Institute of Technology graduate student Hannah Blitzblau suggests that part of the answer lies in where DSBs are formed. Blitzblau has shown that these DSBs are not scattered randomly throughout the chromosomes, but occur most frequently in a specific band near telomeres, the end caps of chromosomes. When telomeres are spliced into the central part of a chromosome, this DSB “hotspot” effect is still seen at the same distance from the new telomeres.

“This is a simple mechanism for making sure that all chromosomes, even the shortest ones, have the crossovers required for meiosis,” says Blitzbau. “If the breaks occurred randomly, the smallest chromosomes often wouldn’t have any crossovers.”

In addition, Blitzblau showed that DSBs occur at high rates around the central part of the chromosome called the centromere, It was previously thought that DSBs and crossovers rarely occurred in this region.

“This is incredibly surprising,” says Hochwagen. “The chromosomes start the crossover process in the centromeres, but divert and reseal the breaks instead.”

Some of the earlier research had been done in mutant yeast strains; the Whitehead researchers say that the current work in non-mutant yeast is a more accurate representation of normal processes.

This research will help scientists understand chromosome events leading to infertility and birth defects. In addition, although this work does not touch on why some cells divide improperly, Blitzblau and Hochwagen anticipate that the technologies developed for this study will allow researchers to identify sites that are sensitive to breaks caused by agents, such as certain cancer drugs. The investigators are adapting the methods used in yeast to map break-sensitive sites in mammalian cells.

Eric Bender | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Blitzblau Chromosome DSB Telomere birth defect breaks

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>