Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells keep in shape - Scientists elucidate a molecular mechanism that plays a key role in giving a cell its shape

03.12.2007
Cells in our body come in various shapes and sizes. Each cell is shaped in such a way as to optimise it for a specific function. When things go wrong and a cell does not adopt its dedicated shape, its function can be impaired and the cell can cause problems in the body.

Researchers at the European Molecular Biology Laboratory (EMBL) and the Institute for Atomic and Molecular Physics (AMOLF), The Netherlands, have now decoded a molecular mechanism that plays an important role in the development of a cell’s shape. In this week’s issue of Nature they report a new experimental approach that sheds light on the interaction between proteins and the cell’s skeleton.

That each cell type has its unique shape is due to its cytoskeleton, an internal scaffold built of protein filaments. Especially important are microtubules, dynamic filaments that constantly grow and shrink. Their spatial organisation inside cells depends on a variety of regulator proteins, some of which only interact with the growing ends of these filament. How these so called plus-end tracking proteins recognise the dynamic structure of a growing microtubule end is a long-standing puzzle. Researchers in the groups of Thomas Surrey and Damian Brunner at EMBL and of Marileen Dogetrom at AMOLF have now developed the first method that allows to simultaneously study multiple plus-end tracking molecules, so called +TIPs, in the test tube.

“+TIPs specifically bind to the fast-growing plus end of a microtubule and follow it as it grows. They act as a plus-end label so that other proteins know where to bind to regulate the filament’s stability,” says Surrey. “For years it has been impossible to reconstitute this behaviour in a test tube. Our new system now revealed which proteins need to be present for plus-end tracking and what the underlying mechanisms are.”

... more about:
»Filament »Tracking »microtubule »plus-end

Applying the new method they succeeded in dissecting a minimal molecular system consisting of three end tracking proteins from yeast cells. The proteins were labelled with fluorescence to monitor their behaviour with a microscope. This procedure revealed that one of the proteins has the ability to recognise the specific structure of the growing microtubule tip, binds to it and acts as a loading platform for the other two proteins. The inherent motor activity of one of the other two proteins, which allows it to walk along microtubules, contributes to the ability of the molecular system to follow growing microtubule ends selectively.

“The great advantage of our new assay is that it can be applied to all kinds of other proteins that interact with microtubules,” says Peter Bieling, who carried out the research in Surrey’s lab. “It is a powerful approach that will advance our understanding of the large variety of different microtubule end tracking proteins and can shed light on their mechanics and functions.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads/

Further reports about: Filament Tracking microtubule plus-end

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>