Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Protein That Detects Damaged DNA

14.05.2002


Physicians have long marveled at the body’s ability to heal itself. Over time, breaks, tears, burns and bruises can often disappear sans medical intervention. Less well-understood are the similarly extraordinary repairs that take place on the molecular level, in DNA. To that end, findings announced today in the Proceedings of the National Academy of Sciences, may prove insightful. According to the report, researchers have found that a protein known as ATR appears to sense damage to DNA and touch off a sequence of events leading to molecular mending.



Ultraviolet radiation, chemotherapy and other agents can cause lesions in cellular DNA that must be fixed before the cell divides and replicates the mutations, which can lead to cancer, among other problems. Previous work had implicated ATR in the repair of damaged DNA, but exactly which part of that cascade of events the protein is responsible for remained a mystery. The new research, conducted by Aziz Sancar and his colleagues at the University of North Carolina, suggests that ATR directly detects DNA lesions and sounds the alarm bell, summoning the other members of the repair crew to duty, so to speak. "To find out if ATR directly sensed damaged DNA, we put a molecular tag on the ATR protein and purified it," Sancar explains. "We incubated the tagged protein with either bits of DNA that were normal or damaged by UV radiation. ATR bound more often to damaged DNA than to undamaged DNA." Furthermore, he notes, ATR’s activity increased when it encountered problematic DNA.

The results imply that ATR functions as an initial sensor in what is known as the DNA damage checkpoint response. "This is a very important phenomenon in both normal and cancerous cells," Sancar observes. "ATR appears to act as a switch that starts the repair process and also stops cells from proliferating while they are being repaired." Although the new work "is not going to cure cancer by itself," he remarks, "it is a significant step forward" in that it could point the way to new anticancer drugs.

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>