Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Protein That Detects Damaged DNA

14.05.2002


Physicians have long marveled at the body’s ability to heal itself. Over time, breaks, tears, burns and bruises can often disappear sans medical intervention. Less well-understood are the similarly extraordinary repairs that take place on the molecular level, in DNA. To that end, findings announced today in the Proceedings of the National Academy of Sciences, may prove insightful. According to the report, researchers have found that a protein known as ATR appears to sense damage to DNA and touch off a sequence of events leading to molecular mending.



Ultraviolet radiation, chemotherapy and other agents can cause lesions in cellular DNA that must be fixed before the cell divides and replicates the mutations, which can lead to cancer, among other problems. Previous work had implicated ATR in the repair of damaged DNA, but exactly which part of that cascade of events the protein is responsible for remained a mystery. The new research, conducted by Aziz Sancar and his colleagues at the University of North Carolina, suggests that ATR directly detects DNA lesions and sounds the alarm bell, summoning the other members of the repair crew to duty, so to speak. "To find out if ATR directly sensed damaged DNA, we put a molecular tag on the ATR protein and purified it," Sancar explains. "We incubated the tagged protein with either bits of DNA that were normal or damaged by UV radiation. ATR bound more often to damaged DNA than to undamaged DNA." Furthermore, he notes, ATR’s activity increased when it encountered problematic DNA.

The results imply that ATR functions as an initial sensor in what is known as the DNA damage checkpoint response. "This is a very important phenomenon in both normal and cancerous cells," Sancar observes. "ATR appears to act as a switch that starts the repair process and also stops cells from proliferating while they are being repaired." Although the new work "is not going to cure cancer by itself," he remarks, "it is a significant step forward" in that it could point the way to new anticancer drugs.

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>