Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Mind Electric?

14.05.2002


Are our thoughts made of electricity? Not the familiar kind of electrical signals that travel up and down wires in our computer or nerves in our brain, but the distributed kind of electromagnetic field that permeates space and carries the broadcast signal to the TV or radio.



Professor Johnjoe McFadden from the School of Biomedical and Life Sciences at the University of Surrey believes our conscious mind could be an electromagnetic field. “The theory solves many previously intractable problems of consciousness and could have profound implications for our concepts of mind, free will, spirituality, the design of artificial intelligence, and even life and death,” he said.

Most people consider ‘mind’ to be all the conscious things that we are aware of. But much, if not most, mental activity goes on without awareness. Actions like walking, changing gear in your car or peddling a bicycle can become as automatic as breathing. The biggest puzzle in neuroscience is how the brain activity that we’re aware of (consciousness) differs from the brain activity driving all of those unconscious actions.


When we see an object, signals from our retina travel along nerves as waves of electrically charged ions. When they reach the nerve terminus the signal jumps to the next nerve via chemical neurotransmitters. The receiving nerve decides whether or not it will fire, based on the number of firing votes it receives from its upstream nerves. In this way, electrical signals are processed in our brain before being transmitted to our body. But where in all this movement of ions and chemicals, is consciousness? Scientists can find no region or structure in the brain that specialises in conscious thinking. Consciousness remains a mystery.

“Consciousness is what makes us ‘human’, Professor McFadden said. “Language, creativity, emotions, spirituality, logical deduction, mental arithmetic, our sense of fairness, truth, ethics, are all inconceivable without consciousness.” But what’s it made of?

One of the fundamental questions of consciousness, known as the binding problem, can be explained by looking at a tree. Most people when asked how many leaves they see will answer ‘thousands’. But neurobiology tells us that the information (all the leaves) is dissected and scattered amongst millions of widely separated neurones. Scientists are trying to explain where in the brain all those leaves are stuck together to form the conscious impression of a whole tree. How does our brain bind information to generate consciousness?

What Professor McFadden realised was that every time a nerve fires, the electrical activity sends a signal to the brain’s electromagnetic (em) field. But unlike solitary nerve signals, information that reaches the brain’s em field is automatically bound together with all the other signals in the brain. The brain’s em field does the binding that is characteristic of consciousness. What Professor McFadden and, independently, the New Zealand-based neurobiologist Sue Pockett, have proposed, is that the brain’s em field IS consciousness.

The brain’s electromagnetic field is not just an information sink; it can influence our actions, pushing some neurones towards firing and others away from firing. This influence, Professor McFadden proposes, is the physical manifestation of our conscious will.

The theory explains many of the peculiar features of consciousness, such as its involvement in the learning process. Anyone learning to drive a car will have experienced how the first (very conscious) fumblings are transformed through constant practise into automatic actions. The neural networks driving those first uncertain fumblings are precisely where we would expect to find nerves in the undecided state when a small nudge from the brain’s em field can topple them towards or away from firing. The field will ‘fine tune’ the neural pathway towards the desired goal. But neurones are connected so that when they fire together, they wire together, to form stronger connections. After practice, the influence of the field will become dispensable. The activity will be learnt and may thereafter be performed unconsciously.

One of the objections to an electromagnetic field theory of consciousness is if our minds are electromagnetic, then why don’t we pass out when we walk under an electrical cable or any other source of external electromagnetic fields? The answer is that our skin, skull and cerebrospinal fluid shield us from external electric fields.

“The conscious electromagnetic information field is at present still a theory. But if true, there are many fascinating implications for the concept of free will, the nature of creativity or spirituality, consciousness in animals and even the significance of life and death. The theory explains why conscious actions feel so different from unconscious ones – it is because they plug into the vast pool of information held in the brain’s electromagnetic field,” Professor McFadden concluded.

Liezel Tipper | alphagalileo
Further information:
http://www.imprint.co.uk/jcs_9_4.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>