Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Mind Electric?

14.05.2002


Are our thoughts made of electricity? Not the familiar kind of electrical signals that travel up and down wires in our computer or nerves in our brain, but the distributed kind of electromagnetic field that permeates space and carries the broadcast signal to the TV or radio.



Professor Johnjoe McFadden from the School of Biomedical and Life Sciences at the University of Surrey believes our conscious mind could be an electromagnetic field. “The theory solves many previously intractable problems of consciousness and could have profound implications for our concepts of mind, free will, spirituality, the design of artificial intelligence, and even life and death,” he said.

Most people consider ‘mind’ to be all the conscious things that we are aware of. But much, if not most, mental activity goes on without awareness. Actions like walking, changing gear in your car or peddling a bicycle can become as automatic as breathing. The biggest puzzle in neuroscience is how the brain activity that we’re aware of (consciousness) differs from the brain activity driving all of those unconscious actions.


When we see an object, signals from our retina travel along nerves as waves of electrically charged ions. When they reach the nerve terminus the signal jumps to the next nerve via chemical neurotransmitters. The receiving nerve decides whether or not it will fire, based on the number of firing votes it receives from its upstream nerves. In this way, electrical signals are processed in our brain before being transmitted to our body. But where in all this movement of ions and chemicals, is consciousness? Scientists can find no region or structure in the brain that specialises in conscious thinking. Consciousness remains a mystery.

“Consciousness is what makes us ‘human’, Professor McFadden said. “Language, creativity, emotions, spirituality, logical deduction, mental arithmetic, our sense of fairness, truth, ethics, are all inconceivable without consciousness.” But what’s it made of?

One of the fundamental questions of consciousness, known as the binding problem, can be explained by looking at a tree. Most people when asked how many leaves they see will answer ‘thousands’. But neurobiology tells us that the information (all the leaves) is dissected and scattered amongst millions of widely separated neurones. Scientists are trying to explain where in the brain all those leaves are stuck together to form the conscious impression of a whole tree. How does our brain bind information to generate consciousness?

What Professor McFadden realised was that every time a nerve fires, the electrical activity sends a signal to the brain’s electromagnetic (em) field. But unlike solitary nerve signals, information that reaches the brain’s em field is automatically bound together with all the other signals in the brain. The brain’s em field does the binding that is characteristic of consciousness. What Professor McFadden and, independently, the New Zealand-based neurobiologist Sue Pockett, have proposed, is that the brain’s em field IS consciousness.

The brain’s electromagnetic field is not just an information sink; it can influence our actions, pushing some neurones towards firing and others away from firing. This influence, Professor McFadden proposes, is the physical manifestation of our conscious will.

The theory explains many of the peculiar features of consciousness, such as its involvement in the learning process. Anyone learning to drive a car will have experienced how the first (very conscious) fumblings are transformed through constant practise into automatic actions. The neural networks driving those first uncertain fumblings are precisely where we would expect to find nerves in the undecided state when a small nudge from the brain’s em field can topple them towards or away from firing. The field will ‘fine tune’ the neural pathway towards the desired goal. But neurones are connected so that when they fire together, they wire together, to form stronger connections. After practice, the influence of the field will become dispensable. The activity will be learnt and may thereafter be performed unconsciously.

One of the objections to an electromagnetic field theory of consciousness is if our minds are electromagnetic, then why don’t we pass out when we walk under an electrical cable or any other source of external electromagnetic fields? The answer is that our skin, skull and cerebrospinal fluid shield us from external electric fields.

“The conscious electromagnetic information field is at present still a theory. But if true, there are many fascinating implications for the concept of free will, the nature of creativity or spirituality, consciousness in animals and even the significance of life and death. The theory explains why conscious actions feel so different from unconscious ones – it is because they plug into the vast pool of information held in the brain’s electromagnetic field,” Professor McFadden concluded.

Liezel Tipper | alphagalileo
Further information:
http://www.imprint.co.uk/jcs_9_4.html

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>