Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special grants get new researchers off the ground

30.11.2007
The benefits of special grants designed to give talented new researchers a ‘leg-up’ on the career ladder are bearing fruit.

A recently recruited scientist to The University of Nottingham has won a remarkable £870,000 of funding through two New Investigator Research schemes that help newly employed university researchers set up laboratories and establish their own track record.

The work of Dr Aziz Aboobaker, a Research Councils UK (RCUK) Academic Research Fellow in the School of Biology, focuses on the biology of stem cells in Planarians — immortal fresh water flat worms that have the ability to regenerate themselves from just small pieces of their own body.

The significance of Dr Aziz Aboobaker’s work, in the Institute of Genetics, has been recognised with awards through New Investigator Research schemes run by the Biotechnology and Biology Sciences Research Council (BBSRC) and the Medical Research Council (MRC). These schemes target talented early-career scientists and can provide a route into permanent academic positions or funding and ‘protected time’ in which to establish an independent research career.

... more about:
»Aboobaker »Stem »schemes »stem cells

Professor David Greenaway, Pro-Vice Chancellor for Research, said: "Winning competitive awards such as these is especially challenging for early career researchers. Dr Aboobaker has done spectacularly well to have won two. This will give his important work on stem cells a real push."

Planarians have an amazing ability to regenerate whole animals from just small fragments — this includes a whole new brain as well as all the other structures that make an animal. The worm’s regenerative abilities are based on a pool of stem cells called neoblasts, collectively these cells are able to divide and change into any missing cell type.

Across the world the Planarian is becoming a model organism for the study of stem cell biology, with established laboratories in the USA, Japan, Spain and now Dr Aboobaker’s lab at Nottingham.

Dr Aboobaker who set up his laboratory in September 2006 said: “The awards have allowed us to get up and running quickly and build a very competitive team of researchers. To have your ideas funded at such an early stage is very encouraging. Our team here at the University has grown from one to 12 in little over a year. We are around six months into the project and we are already getting some really exciting data.”

Dr Aboobaker recently published some of his findings in PNAS (Proceedings of the National Academy of Sciences of the United States of America).

The results of this research, in collaboration with a group in Barcelona, showed that the regeneration process requires a gene that is very similar to one implicated in cell death in humans. Their study indicated that removal of old tissues and structures is just as important as the production of new ones from dividing stem cells.

Dr Aboobaker said: “When planarians regenerate from small pieces much of what they do is remodeling. That small piece, which might be mostly muscle or nerves, not only has to make a whole new brain, mouth or gut, it has to get rid of the existing cells that aren’t appropriate anymore.”

Dr Cristina Gonzalez-Estevez, the lead author and a research fellow working in Dr Aboobaker’s laboratory hopes that studying the basics of this remodeling process in a simple animal that does it all the time as part of its normal day to day life will have important implications for regenerative biology in more complex animals like ourselves.

Professor David Brook, Head of the School of Biology said: "These New Investigator Research schemes are excellent as they make sure new talent isn’t overlooked and it is important for The University of Nottingham that our new researchers secure such 'blue chip' funding. The awards recognise the exciting ideas and projects that Aziz is generating.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: Aboobaker Stem schemes stem cells

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>