Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special grants get new researchers off the ground

30.11.2007
The benefits of special grants designed to give talented new researchers a ‘leg-up’ on the career ladder are bearing fruit.

A recently recruited scientist to The University of Nottingham has won a remarkable £870,000 of funding through two New Investigator Research schemes that help newly employed university researchers set up laboratories and establish their own track record.

The work of Dr Aziz Aboobaker, a Research Councils UK (RCUK) Academic Research Fellow in the School of Biology, focuses on the biology of stem cells in Planarians — immortal fresh water flat worms that have the ability to regenerate themselves from just small pieces of their own body.

The significance of Dr Aziz Aboobaker’s work, in the Institute of Genetics, has been recognised with awards through New Investigator Research schemes run by the Biotechnology and Biology Sciences Research Council (BBSRC) and the Medical Research Council (MRC). These schemes target talented early-career scientists and can provide a route into permanent academic positions or funding and ‘protected time’ in which to establish an independent research career.

... more about:
»Aboobaker »Stem »schemes »stem cells

Professor David Greenaway, Pro-Vice Chancellor for Research, said: "Winning competitive awards such as these is especially challenging for early career researchers. Dr Aboobaker has done spectacularly well to have won two. This will give his important work on stem cells a real push."

Planarians have an amazing ability to regenerate whole animals from just small fragments — this includes a whole new brain as well as all the other structures that make an animal. The worm’s regenerative abilities are based on a pool of stem cells called neoblasts, collectively these cells are able to divide and change into any missing cell type.

Across the world the Planarian is becoming a model organism for the study of stem cell biology, with established laboratories in the USA, Japan, Spain and now Dr Aboobaker’s lab at Nottingham.

Dr Aboobaker who set up his laboratory in September 2006 said: “The awards have allowed us to get up and running quickly and build a very competitive team of researchers. To have your ideas funded at such an early stage is very encouraging. Our team here at the University has grown from one to 12 in little over a year. We are around six months into the project and we are already getting some really exciting data.”

Dr Aboobaker recently published some of his findings in PNAS (Proceedings of the National Academy of Sciences of the United States of America).

The results of this research, in collaboration with a group in Barcelona, showed that the regeneration process requires a gene that is very similar to one implicated in cell death in humans. Their study indicated that removal of old tissues and structures is just as important as the production of new ones from dividing stem cells.

Dr Aboobaker said: “When planarians regenerate from small pieces much of what they do is remodeling. That small piece, which might be mostly muscle or nerves, not only has to make a whole new brain, mouth or gut, it has to get rid of the existing cells that aren’t appropriate anymore.”

Dr Cristina Gonzalez-Estevez, the lead author and a research fellow working in Dr Aboobaker’s laboratory hopes that studying the basics of this remodeling process in a simple animal that does it all the time as part of its normal day to day life will have important implications for regenerative biology in more complex animals like ourselves.

Professor David Brook, Head of the School of Biology said: "These New Investigator Research schemes are excellent as they make sure new talent isn’t overlooked and it is important for The University of Nottingham that our new researchers secure such 'blue chip' funding. The awards recognise the exciting ideas and projects that Aziz is generating.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: Aboobaker Stem schemes stem cells

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>