Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design of New Biomaterials from lactic acid

30.11.2007
Researchers from the Universidad Rey Juan Carlos have developed new biocompatible polymeric materials that have many applications inside the medical surgery and the biodegradable materials fields.

Polymeric biomaterials derived from lactic acid have extensive uses in medical applications, especially in the context of biodegradable sutures. They are widely used in the architecture of cardiac tissue, as support for drugs, and biodegradable fixation devices for the repair of small broken bones such as the ones in the hands, joints and feet.

These orthopaedic implants are gradually metabolised and naturally assimilated by the body. Their mass is progressively transferred into the broken bone, helping the healing process and thereby eliminating the need for a second intervention.

These new materials are obtained through molecular catalysis, and require breaking the cyclic dimer of lactic acid “lactide” to obtain polylactic acid (PLA). The lactide is a renewable natural resource that occurs as a by-product of the fermentation of biomass with high starch content, such as maize, wheat, or sugar beet. As in every polymerisation process, a catalyst is required and in this case the active compound must be a metal.

... more about:
»Metal »PLA »acid »biodegradable »catalyst »lactic

Consequently, this catalytic process has been studied with different metals such as tin, yttrium, titanium, aluminium and other lanthanides. However, since on some occasions residues of the catalyst can be incorporated into the polymer, it is important to preserve the biocompatibility and zero toxicity of the PLA by insuring that the metallic catalyst used is biologically benign and does not have a negative impact on tissue. These medical uses have favoured the use of metals like magnesium, calcium or zinc, all of them common inside the human body.

On a different front, PLAs are being investigated as a possible raw material of many manufactured products, since they present similar and in some cases better properties than traditional polymers that are derived from the bioresistant poly (a-olefin), with the significant added benefit of biodegradation.

While their production costs were considered too high in the past, recent developments in the treatment and production combined with the contrasting ecological hazard represented by petroleum derived polymers have brought these types of biodegradable polymers to very competitive positions.

One of the most recent and relevant examples that confirm this growing expansion, is the joint endeavour by Cargill. Inc., and The Dow Chemical Co., who have recently announced the mass production of many tons of PLAs.

The scientific community shows a growing interest to find catalysts that are capable of producing such biomaterials with well defined microstructures, since this defines the mechanical properties, the biodegradability, and the overall usability of the material.

With this in mind, the research group from the URJC, formed by Dr Andrés Garcés and Carlos Alonso and coordinated by Dr Luis Fernando Sánchez-Barba, is working in collaboration with the UCLM to develop different families of catalysts based on magnesium and zinc and stabilised by ligands like heteroscorpionate of they type “NNN”, capable of polymerising the ε-caprolactone and the lactide in a controlled manner. These are extremely active initiators with a chemical formula of [M(R)(NNN)] (M = Mg, Zn) that achieve a productivity of 21.000 Kg of poly-ε- caprolactone (PLC) produced per mol of Mg each hour at room temperature.

Moreover, some of these initiators allow for a controlled growth of the PLA’s microstructure. This is linked to the influence that the heteroscorpionate exerts during the process of opening the cyclic dimmer, which in turn grants control over the future specifications and applications of the produced material such as a high molecular mass, crystallinity as well as high fusion temperature (165ºC), all of it generating a great interest from industry.

This study has been published in the latest editions of the Inorganic Chemistry & Organometallics magazine.

Gabinete de prensa | alfa
Further information:
http://pubs.acs.org/cgi-bin/abstract.cgi/orgnd7/2007/26/
http://pubs.acs.org/cgi-bin/abstract.cgi/inocaj/2007/46/i05/abs/ic062093c.html

Further reports about: Metal PLA acid biodegradable catalyst lactic

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>