Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design of New Biomaterials from lactic acid

30.11.2007
Researchers from the Universidad Rey Juan Carlos have developed new biocompatible polymeric materials that have many applications inside the medical surgery and the biodegradable materials fields.

Polymeric biomaterials derived from lactic acid have extensive uses in medical applications, especially in the context of biodegradable sutures. They are widely used in the architecture of cardiac tissue, as support for drugs, and biodegradable fixation devices for the repair of small broken bones such as the ones in the hands, joints and feet.

These orthopaedic implants are gradually metabolised and naturally assimilated by the body. Their mass is progressively transferred into the broken bone, helping the healing process and thereby eliminating the need for a second intervention.

These new materials are obtained through molecular catalysis, and require breaking the cyclic dimer of lactic acid “lactide” to obtain polylactic acid (PLA). The lactide is a renewable natural resource that occurs as a by-product of the fermentation of biomass with high starch content, such as maize, wheat, or sugar beet. As in every polymerisation process, a catalyst is required and in this case the active compound must be a metal.

... more about:
»Metal »PLA »acid »biodegradable »catalyst »lactic

Consequently, this catalytic process has been studied with different metals such as tin, yttrium, titanium, aluminium and other lanthanides. However, since on some occasions residues of the catalyst can be incorporated into the polymer, it is important to preserve the biocompatibility and zero toxicity of the PLA by insuring that the metallic catalyst used is biologically benign and does not have a negative impact on tissue. These medical uses have favoured the use of metals like magnesium, calcium or zinc, all of them common inside the human body.

On a different front, PLAs are being investigated as a possible raw material of many manufactured products, since they present similar and in some cases better properties than traditional polymers that are derived from the bioresistant poly (a-olefin), with the significant added benefit of biodegradation.

While their production costs were considered too high in the past, recent developments in the treatment and production combined with the contrasting ecological hazard represented by petroleum derived polymers have brought these types of biodegradable polymers to very competitive positions.

One of the most recent and relevant examples that confirm this growing expansion, is the joint endeavour by Cargill. Inc., and The Dow Chemical Co., who have recently announced the mass production of many tons of PLAs.

The scientific community shows a growing interest to find catalysts that are capable of producing such biomaterials with well defined microstructures, since this defines the mechanical properties, the biodegradability, and the overall usability of the material.

With this in mind, the research group from the URJC, formed by Dr Andrés Garcés and Carlos Alonso and coordinated by Dr Luis Fernando Sánchez-Barba, is working in collaboration with the UCLM to develop different families of catalysts based on magnesium and zinc and stabilised by ligands like heteroscorpionate of they type “NNN”, capable of polymerising the ε-caprolactone and the lactide in a controlled manner. These are extremely active initiators with a chemical formula of [M(R)(NNN)] (M = Mg, Zn) that achieve a productivity of 21.000 Kg of poly-ε- caprolactone (PLC) produced per mol of Mg each hour at room temperature.

Moreover, some of these initiators allow for a controlled growth of the PLA’s microstructure. This is linked to the influence that the heteroscorpionate exerts during the process of opening the cyclic dimmer, which in turn grants control over the future specifications and applications of the produced material such as a high molecular mass, crystallinity as well as high fusion temperature (165ºC), all of it generating a great interest from industry.

This study has been published in the latest editions of the Inorganic Chemistry & Organometallics magazine.

Gabinete de prensa | alfa
Further information:
http://pubs.acs.org/cgi-bin/abstract.cgi/orgnd7/2007/26/
http://pubs.acs.org/cgi-bin/abstract.cgi/inocaj/2007/46/i05/abs/ic062093c.html

Further reports about: Metal PLA acid biodegradable catalyst lactic

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>