Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Awarded £5M To Investigate How Cells Communicate

28.11.2007
Scientists at the University of Liverpool have been awarded £5 million to investigate how cells respond to stimuli such as stress and UV radiation.

Biologists at Liverpool will investigate the role of the NF-kappaB signalling system to determine how cells decide when to die. NFkB governs responses within cells to stimuli such as stress and the immune system, but when this system goes wrong it is thought that it can lead to cancer, inflammatory problems and septic shock.

Professor Mike White, from the University’s School of Biological Sciences, said: “Systems Biology involves the analysis of how biological processes work at all levels. This goes from the interactions between individual biological molecules, to the physiology and behaviour of animals and plants. With this grant we can develop models to understand more clearly how cells communicate with each other.”

The project - in collaboration with the Universities of Manchester and Warwick - is a multidisciplinary collaboration involving scientists in Biological and Biomedical Sciences, veterinary scientists and mathematicians.

... more about:
»develop »scientists

A second team from the School of Biological Sciences, headed by Dr Anthony Hall has been awarded a further £1 million as part of a £5 million project led by scientists at the University of Edinburgh to develop a model of how plants cope with temperature changes. The research could help to develop higher-yield crops that are better able to survive in harsh conditions, thus allowing scientists to develop plants capable of withstanding the possible effects of global warming.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

Further reports about: develop scientists

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>