Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3d Structure of a DNA Damage Repair Complex

The work was co directed by Dr. Aidan Doherty from the Sussex Centre for Genome Damage and Stability in the UK and by Dr. Luis Blanco from the Centro de Biología Molecular Severo Ochoa (CSIC-UAM).

This is the first study that shows the 3D structure of a molecular complex found in the bacteria Mycobacterium tuberculosis that repairs DNA damage. According to the biochemical data, this reflects a stage of the search for compatible microhomologies. This is the process of seeking non complementary extremes of DNA that would never link under normal conditions, known as non-homologous end joining (NHEJ). Among the Spanish participating researchers are Dr. Raquel Juárez Santos, and Dr. Angel J. Picher Serantes.

The double strand breaking of DNA is considered the most lethal kind of damage for our genome, since an error in its repair potentially represents cell death or tumour growth. Non-homologous end joining is a repair process for the double strand breaking of DNA which can operate at any stage of the cellular cycle, and it is essential in maintaining the genome stability in mammals. The process uses a combination of proteins responsible for the protection and maintenance of the proximity of the ends as well as all the actions necessary to repair the rupture. As an analogy, NHEJ operates like an adhesive kit that cleans the damaged area, fills the missing parts, and glues together the loose ends, even if is inevitable that some nucleotides are changed or lost in the process. A potential hazard of this mechanism is simultaneous ruptures, since it is possible that the strands are confused and the wrong strands are glued together, and such a translocation could activate an oncogene.

This study, published in Science magazine, identifies the structural bases of the NHEJ process in the DNA of the bacteria Mycobacterium tuberculosis, and shows for the first time the 3D structure of a NHEJ repairing complex. Up until now, there was little information about the different processing activities that occur in sequential coordination during the NHEJ, either about the independent proteins of mammals, or the different parts of the same protein like in bacteria. The union of the extremities shown in the 3D structure and described in this study, shows the stage of alignment of the ends, prior to the processing by the activity of nuclease (DNA cleaver), polymerase (DNA synthesis) and ligase (DNA binding), all carried out by the enzyme LigD (DNA repair) in the case of bacteria. This study can be extrapolated to the NHEJ of mammals.

... more about:
»NHEJ »Strand »repair

From a more applied point of view, this analysis identifies the polymerization of the bacterial LigD as a possible target to hamper the repair process of double strand breaks in these organisms. It has been proven that the NHEJ is a source of genetic variability in bacteria, necessary for their adaptation and survival in genotoxic (toxic for DNA) environments. The selective elimination of this process could have applications such as treatments that avoid the generation of antibiotic resistant bacteria.

Oficina de Cultura Científica | alfa
Further information:

Further reports about: NHEJ Strand repair

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>