Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting edge - Scientists have combined a cutting ribosyme activity with an unwinding helicase activity

10.05.2002


Scientists have long toyed with the idea of putting to work a special class of biological catalysts, called ribozymes, as therapeutic agents. These molecular scissors would harness the activities of overly active genes that contribute to diseases like cancer by cutting their immediate products, messenger RNAs, into unusable pieces. The advantage of this approach, is that these molecules can be made to recognize very specific targets. This is reported in this month issue of EMBO reports.



Up until now, however, technical difficulties have hampered the development of such tools; the targets for these molecules are often folded extensively, making particular cleavage sites inaccessible to the catalyst. However, in the May 15 issue of EMBO reports, H. Kawasaki and K. Taira report on a technical breakthrough. By linking ribozymes to helicases, cellular components whose normal function is to ‘smooth out’ folded RNA’s to allow them to be ‘translated’ into proteins, these investigators have managed to circumvent this ‘folding’ difficulty. They have been able to efficiently inhibit the activities of a number of target RNA’s, even at sites that are known to be inaccessible to regular ribozymes. This has further allowed them to develop a method for investigating the functions of random RNA’s, creating a tool that may be invaluable in characterizing the functions of many of the previously unknown genes that have only recently been uncovered by various genome projects. Although we are not yet ready to treat any diseases using ribozymes, this study may indeed be a big step in the right direction.

Ellen Peerenboom | alphagalileo

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>