Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting edge - Scientists have combined a cutting ribosyme activity with an unwinding helicase activity

10.05.2002


Scientists have long toyed with the idea of putting to work a special class of biological catalysts, called ribozymes, as therapeutic agents. These molecular scissors would harness the activities of overly active genes that contribute to diseases like cancer by cutting their immediate products, messenger RNAs, into unusable pieces. The advantage of this approach, is that these molecules can be made to recognize very specific targets. This is reported in this month issue of EMBO reports.



Up until now, however, technical difficulties have hampered the development of such tools; the targets for these molecules are often folded extensively, making particular cleavage sites inaccessible to the catalyst. However, in the May 15 issue of EMBO reports, H. Kawasaki and K. Taira report on a technical breakthrough. By linking ribozymes to helicases, cellular components whose normal function is to ‘smooth out’ folded RNA’s to allow them to be ‘translated’ into proteins, these investigators have managed to circumvent this ‘folding’ difficulty. They have been able to efficiently inhibit the activities of a number of target RNA’s, even at sites that are known to be inaccessible to regular ribozymes. This has further allowed them to develop a method for investigating the functions of random RNA’s, creating a tool that may be invaluable in characterizing the functions of many of the previously unknown genes that have only recently been uncovered by various genome projects. Although we are not yet ready to treat any diseases using ribozymes, this study may indeed be a big step in the right direction.

Ellen Peerenboom | alphagalileo

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>