Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Choosing healthy embryos in IVF


A revolutionary method for detecting which human embryos are most likely to develop successfully to the stage at which they implant in the womb has been developed by scientists at the University of York and clinicians at Leeds General Infirmary.

The research has been funded by the Medical Research Council.

The discovery, if confirmed in clinical trials, could bring new hope for many couples undergoing fertility treatment since current failure rates are high. One of the problems is that embryos for replacement in the womb are currently judged by eye under the microscope but this method has not proved particularly successful in predicting their potential to give rise to a pregnancy.

The new method has been developed by Professor Henry Leese and colleagues in the Department of Biology at the University of York, together with members of the IVF Unit (In Vitro Fertilisation) at Leeds General Infirmary. Two days after fertilisation, embryos are placed in a culture medium containing amino acids and monitored in the laboratory to see how they consume or produce these amino acids.

Professor Leese said: “We’ve found a marked difference between the embryos which develop successfully in culture and those which do not. The healthy embryos have a ‘quieter’ metabolism.

‘The method is completely non-invasive and does not harm the embryos in any way. It opens up the prospect of selecting high-quality embryos to replace into the womb, increasing success rates, reducing the financial and emotional cost to patients and greatly eliminating the risk of multiple births. If all goes well with the clinical trials, we hope to have a diagnostic test for use in clinics in two or three years’ time.”

Professor Leese is a member of the Human Fertilisation and Embryology Authority (HFEA) which regulates, licenses and collects data on fertility treatments such as IVF and donor insemination, as well as human embryo research, in the UK.

Professor Henry Leese | alphagalileo

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>