Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene study adds weight to theory that native people of the Americas arrived in a single main migration across the Bering Strait

27.11.2007
U-M researchers analyze 678 genetic markers in 29 native populations

Did a relatively small number of people from Siberia who trekked across a Bering Strait land bridge some 12,000 years ago give rise to the native peoples of North and South America?

Or did the ancestors of today's native peoples come from other parts of Asia or Polynesia, arriving multiple times at several places on the two continents, by sea as well as by land, in successive migrations that began as early as 30,000 years ago?

The questions - featured on magazine covers and TV specials - have agitated anthropologists, archaeologists and others for decades.

... more about:
»Bering »Migration »Strait »U-M »across »evidence »native

University of Michigan scientists, working with an international team of geneticists and anthropologists, have produced new genetic evidence that's likely to hearten proponents of the land bridge theory. The study, published online in PLoS Genetics, is one of the most comprehensive analyses so far among efforts to use genetic data to shed light on the topic.

The researchers examined genetic variation at 678 key locations or markers in the DNA of present-day members of 29 Native American populations across North, Central and South America. They also analyzed data from two Siberian groups. The analysis shows:

o genetic diversity, as well as genetic similarity to the Siberian groups, decreases the farther a native population is from the Bering Strait - adding to existing archaeological and genetic evidence that the ancestors of native North and South Americans came by the northwest route.

o a unique genetic variant is widespread in Native Americans across both American continents - suggesting that the first humans in the Americas came in a single migration or multiple waves from a single source, not in waves of migrations from different sources. The variant, which is not part of a gene and has no biological function, has not been found in genetic studies of people elsewhere in the world except eastern Siberia.

The researchers say the variant likely occurred shortly prior to migration to the Americas, or immediately afterwards.

"We have reasonably clear genetic evidence that the most likely candidate for the source of Native American populations is somewhere in east Asia," says Noah A. Rosenberg, Ph.D., assistant professor of human genetics and assistant research professor of bioinformatics at the Center for Computational Medicine and Biology at the U-M Medical School and assistant research professor at the U-M Life Sciences Institute.

"If there were a large number of migrations, and most of the source groups didn't have the variant, then we would not see the widespread presence of the mutation in the Americas," he says.

Rosenberg has previously studied the same set of 678 genetic markers used in the new study in 50 populations around the world, to learn which populations are genetically similar and what migration patterns might explain the similarities. For North and South America, the current research breaks new ground by looking at a large number of native populations using a large number of markers.

The pattern the research uncovered - that as the founding populations moved south from the Bering Strait, genetic diversity declined - is what one would expect when migration is relatively recent, says Mattias Jakobsson, Ph.D., co-first author of the paper and a post-doctoral fellow in human genetics at the U-M Medical School and the U-M Center for Computational Medicine and Biology. There has not been time yet for mutations that typically occur over longer periods to diversify the gene pool.

In addition, the study's findings hint at supporting evidence for scholars who believe early inhabitants followed the coasts to spread south into South America, rather than moving in waves across the interior.

"Assuming a migration route along the coast provides a slightly better fit with the pattern we see in genetic diversity," Rosenberg says.

The study also found that:

o Populations in the Andes and Central America showed genetic similarities.

o Populations from western South America showed more genetic variation than populations from eastern South America.

o Among closely related populations, the ones more similar linguistically were also more similar genetically.

Citation: PLoS Genet 3(11): e185. doi:10.1371/journal.pgen.0030185

In addition to Rosenberg and Jakobsson, study authors include Cecil M. Lewis, Jr., former post-doctoral fellow in the U-M Department of Human Genetics, and 24 researchers at U.S., Canadian, British, Central and South American universities.

Funding for the research came from the National Institutes of Health, the Canadian Institutes of Health Research, Fondecyt Proyecto, the Swiss National Foundation and the University of Michigan.

Anne Rueter | University of Michigan
Further information:
http://www.umich.edu

Further reports about: Bering Migration Strait U-M across evidence native

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>