Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Major advance in crystal structure prediction

Dr. Marcus Neumann of Avant-garde Materials Simulation (AMS) in Paris has achieved a major advance in the prediction of the crystal structures of small organic molecules as part of an international scientific event.

He collaborated with researchers Drs. Frank Leusen and John Kendrick from the Institute of Pharmaceutical Innovation (IPI) at the University of Bradford, who applied AMS technology in the Blind Test in Crystal Structure Prediction, organised by the University of Cambridge and hosted by the Cambridge Crystallographic Data Centre (CCDC).

The three researchers have met the challenge by correctly predicting the crystal structures of all four Blind Test compounds using computational methods without any experimental input.

Crystal structures describe the periodically repeating arrangement of molecules in a material and determine many of a material’s properties, such as solubility, dissolution rate, hardness, colour and external shape. The ability to predict crystal structures could revolutionise the design of materials with novel properties.

In particular, the pharmaceutical industry would benefit from reliable methods of crystal structure prediction because pharmaceutical molecules are prone to crystallise in more than one crystal structure (or polymorph), depending on the conditions under which the molecule is crystallised. The specific polymorph that goes into a formulation must be strictly controlled to ensure consistency of delivery to the patient.

The team applied a new computer program, GRACE, recently developed by Avant-garde Materials Simulation, and predicted the crystal structures of all four test compounds correctly. Their results are a significant improvement over the outcome of previous Blind Tests. The other 14 participants in the event also achieved an improvement in the number of correctly predicted crystal structures, although no other participant correctly predicted all four crystal structures.

Dr Marcus Neumann, author of computer program GRACE for crystal structure prediction and Director of AMS, said: “Obviously we are delighted with these results but there is still plenty of room for improvements. Over the next few years the range of applicability will gradually extend towards more and more complex compounds such as highly flexible molecules, solvates and salts.”

Many approaches to the problem have been developed and these have been evaluated over the years in the Blind Tests. The research groups who had been developing methods for predicting crystal structures in the latest test were challenged to predict four recently determined crystal structures given only the chemical diagram of the molecules and conditions of crystallisation, with three predictions allowed per crystal.

The results of previous blind tests, in 1999, 2001 and 2004, demonstrated that the crystal structures of small organic molecules are hard to predict. The rates of success were low and no one method was consistently successful over the range of types of molecules studied.

Dr Graeme Day of the University of Cambridge, who co-ordinated this year’s challenge, said: “The results of this year’s test reflect significant development over the past few years. Things looked much less encouraging last time we held a blind test, but crystal structure prediction can now be seen as a real tool to be used alongside experimental studies, when designing new materials or developing a pharmaceutical molecule.”

Dr John Kendrick, Senior Researcher at the Institute of Pharmaceutical Innovation at the University of Bradford, said: “We are tremendously excited about this result. The success of our approach begins to answer many questions which have been posed over the years, and opens up several new avenues for leading-edge research.

“Having proven that the crystal structures of small organic compounds can be predicted reliably, we now face the challenge of predicting the relative stability of polymorphs as a function of crystallisation conditions to really capture the effect of temperature and solvent.”

For additional information, please contact:

Dr Marcus A. Neumann, Avant-garde Materials Simulation, 30 bis, rue du vieil Abreuvoir, F-78100 Saint-Germain-en-Laye, France

tel: +33 (0)6 25053329

Dr John Kendrick or Dr Frank Leusen, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, BD7 1DP, United Kingdom
Tel: +44 (0)1274 236101
Dr Graeme M. Day, Royal Society University Research Fellow, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
tel: +44 (0)1223 336390
Dr Frank Allen, Executive Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, United Kingdom

Avant-garde Materials Simulation (AMS)

With funding from the pharmaceuticals industry and a strong focus on the elaboration of innovative and proprietary methods and algorithms, Avant-garde Materials Simulation's highly qualified staff has been dedicated to the development of leading edge software in the field of crystal structure prediction since 2002.

Crystal structures are predictable, and so will be many of their properties. Avant-garde Materials Simulation is the ideal partner for any industrial company who needs to gain immediate access to cutting-edge technology for in silico polymorph screening.

For more information on AMS, visit

The Institute of Pharmaceutical Innovation (IPI)

The IPI at the University of Bradford is a research facility dedicated to supporting innovation in drug development and drug delivery.

Academic research in the IPI focuses on the global need to accelerate the drug development process. Its research aims to transform molecules and biologicals into quality medicines. Within this focused activity, the latest computational and experimental techniques are applied by a multidisciplinary research team with solid industrial experience.

For more information about the IPI, visit

Oliver Tipper | alfa
Further information:

Further reports about: AMS Avant-garde Blind Cambridge Development IPI Pharmaceutical Polymorph predict predicted prediction

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>