Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees are the new silkworms

26.11.2007
Moths and butterflies, particularly silkworms, are well known producers of silk. And we all know spiders use it for their webs. But they are not the only invertebrates who make use of the strength and versatility of silk.

Dr Tara Sutherland and her group from CSIRO Entomology are looking at silks produced by other insects and the results of their recent work have been published in Molecular Biology and Evolution, in the paper Conservation of Essential Design Features in Coiled Coil Silks.

“Most people are unaware that bees and ants produce silk but they do and its molecular structure is very different to that of the large protein, sheet structure of moth and spider silk. The cocoon and nest silks we looked at consist of coiled coils - a protein structural arrangement where multiple helices wind around each other. This structure produces a light weight, very tough silk,” she says.

“We had already identified the honeybee silk genes,” says Dr Sutherland, “and now we have identified and sequenced the silk genes of bumblebees, bulldog ants and weaver ants, and compared these to honeybee silk genes. This let us identify the essential design elements for the assembly and function of coiled coil silks”.

... more about:
»Coil »NEST »Social »cocoon »coiled »larvae
“The cocoon and nest silks we looked at consist of coiled coils - a protein structural arrangement where multiple helices wind around each other. This structure produces a light weight, very tough silk,”

she says.“To do this, we identified and compared the coiled coil proteins from cocoon and nest silks from species which span the evolutionary tree of the social Hymenoptera (bees, ants and wasps),” she says.

Bees and ants produce high-performance silk and, although the silks in all these species are produced by the larvae and by the same glands, they use them differently.

Honeybee larvae produce silk to reinforce the wax cells in which they pupate, bulldog ant larvae spin solitary cocoons for protection during pupation, bumblebee larvae spin cocoons within wax hives (the cocoons are reused to store pollen and honey), and weaver ants use their larvae as ‘tools’ to fasten fresh plant leaves together to form large communal nests..

These groups of insects have evolved silks that are very tough and stable in comparison to the classical sheet silks and it is probable that the evolution of this remarkable material has underpinned the success of the social Hymenoptera.

Coiled coil silks are common in aculeate social insects i.e. those that have stings but not in aculeate parasitic wasps. These social insects are higher up the evolutionary tree and the coiled coil silks appear to have evolved about 155 million years ago.

The silk research is part of the joint CSIRO and Grains Research & Development Corporation (GRDC) Crop Biofactories Initiative (CBI).

Dr. Tara Sutherland | EurekAlert!
Further information:
http://www.csiro.au

Further reports about: Coil NEST Social cocoon coiled larvae

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>