Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidepressant found to extend lifespan in C. elegans

23.11.2007
A team of scientists led by Howard Hughes Medical Institute (HHMI) investigator Linda B. Buck has found that a drug used to treat depression can extend the lifespan of adult roundworms.

Buck and colleagues Michael Petrascheck and Xiaolan Ye report in the November 22, 2007, issue of the journal Nature, that the antidepressant drug mianserin can extend the lifespan of the nematode Caenorhabditis elegans by about 30 percent.

Intriguingly, the drug may act by mimicking the effects of caloric restriction, which has been shown to retard the effects of aging in a variety of animals ranging from worms and flies to mammals.

“Our studies indicate that lifespan extension by mianserin involves mechanisms associated with lifespan extension by dietary restriction,” said Buck, a member of the Basic Sciences Division of the Fred Hutchinson Cancer Research Center in Seattle. “We don't have an explanation for this. All we can say is that if we give the drug to caloric restricted animals, it doesn't increase their lifespan any further. That suggests the same mechanism may be involved.”

Researchers don’t yet understand exactly how mianserin staves off the effects of aging. But the drug appears to act the same way in both C. elegans and humans: by blocking certain receptors for the neurotransmitter serotonin. Serotonin is a chemical that cells use to communicate, helping them regulate many functions, including mood, appetite, and sensory perception.

Buck said it was a surprise to find that a drug used to treat depression in humans could extend lifespan in worms. The researchers in Buck’s lab found that in addition to inhibiting certain serotonin receptors in the worm, it also blocked receptors for another neurotransmitter, octopamine.

A number of observations support the idea that serotonin and octopamine may complement one another in a physiological context, Buck explained, with serotonin signaling the presence of food and octopamine signaling its absence or a state of starvation. C. elegans, for instance, usually only lays eggs when food is on hand. But serotonin stimulates egg laying in the absence of food, while octopamine inhibits egg laying even when food is nearby. Another example of interplay between the two chemicals is that pharyngeal pumping, the mechanism by which worms ingest food, is jump-started by serotonin and thwarted by octopamine.

“In our studies, mianserin had a much greater inhibitory effect on the serotonin receptor than the octopamine receptor,” she said. “One possibility is that there is a dynamic equilibrium between serotonin and octopamine signaling and the drug tips the balance in the direction of octopamine signaling, producing a perceived, though not real, state of starvation that activates aging mechanisms downstream of dietary restriction.”

Buck and her colleagues chose to focus on the effects of mianserin based on the results of a search through 88,000 chemicals for agents that extended the lifespan of nematodes. They found 115 such chemicals. In follow-up studies of one chemical, they found four additional compounds, including mianserin, that extended lifespan by 20-33 percent. All four compounds inhibit certain types of serotonin receptors in humans.

“We screened a wide variety of chemicals without knowing anything about them except that they were small molecules,” Buck noted. “By screening adult animals with this extremely varied panel of compounds, we hoped to identify drugs that could increase lifespan in adults, even though some might have a deleterious effect on the developing animal.”

By identifying drugs that influence lifespan, Buck added, it may be possible to home in on how those drugs act and contribute to a growing body of knowledge about the genetic mechanisms of aging.

“Other researchers have done beautiful work using molecular genetic approaches to identify genes involved in aging,” she said. “We decided to take a chemical approach. By finding chemicals that enhance longevity, and then finding the targets of those chemicals, it may be possible to identify additional genes important in aging. In addition, the chemical approach could point to drugs suitable for testing in mammals.”

Buck said that her group has yet to identify what kinds of cells are affected by the drug, because while the serotonin receptors involved are only found on neurons, many types of cells -- not just cells of the nervous system -- have receptors for octopamine.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Serotonin Signaling elegans found identify mianserin octopamine receptor

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>