Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidepressant found to extend lifespan in C. elegans

23.11.2007
A team of scientists led by Howard Hughes Medical Institute (HHMI) investigator Linda B. Buck has found that a drug used to treat depression can extend the lifespan of adult roundworms.

Buck and colleagues Michael Petrascheck and Xiaolan Ye report in the November 22, 2007, issue of the journal Nature, that the antidepressant drug mianserin can extend the lifespan of the nematode Caenorhabditis elegans by about 30 percent.

Intriguingly, the drug may act by mimicking the effects of caloric restriction, which has been shown to retard the effects of aging in a variety of animals ranging from worms and flies to mammals.

“Our studies indicate that lifespan extension by mianserin involves mechanisms associated with lifespan extension by dietary restriction,” said Buck, a member of the Basic Sciences Division of the Fred Hutchinson Cancer Research Center in Seattle. “We don't have an explanation for this. All we can say is that if we give the drug to caloric restricted animals, it doesn't increase their lifespan any further. That suggests the same mechanism may be involved.”

Researchers don’t yet understand exactly how mianserin staves off the effects of aging. But the drug appears to act the same way in both C. elegans and humans: by blocking certain receptors for the neurotransmitter serotonin. Serotonin is a chemical that cells use to communicate, helping them regulate many functions, including mood, appetite, and sensory perception.

Buck said it was a surprise to find that a drug used to treat depression in humans could extend lifespan in worms. The researchers in Buck’s lab found that in addition to inhibiting certain serotonin receptors in the worm, it also blocked receptors for another neurotransmitter, octopamine.

A number of observations support the idea that serotonin and octopamine may complement one another in a physiological context, Buck explained, with serotonin signaling the presence of food and octopamine signaling its absence or a state of starvation. C. elegans, for instance, usually only lays eggs when food is on hand. But serotonin stimulates egg laying in the absence of food, while octopamine inhibits egg laying even when food is nearby. Another example of interplay between the two chemicals is that pharyngeal pumping, the mechanism by which worms ingest food, is jump-started by serotonin and thwarted by octopamine.

“In our studies, mianserin had a much greater inhibitory effect on the serotonin receptor than the octopamine receptor,” she said. “One possibility is that there is a dynamic equilibrium between serotonin and octopamine signaling and the drug tips the balance in the direction of octopamine signaling, producing a perceived, though not real, state of starvation that activates aging mechanisms downstream of dietary restriction.”

Buck and her colleagues chose to focus on the effects of mianserin based on the results of a search through 88,000 chemicals for agents that extended the lifespan of nematodes. They found 115 such chemicals. In follow-up studies of one chemical, they found four additional compounds, including mianserin, that extended lifespan by 20-33 percent. All four compounds inhibit certain types of serotonin receptors in humans.

“We screened a wide variety of chemicals without knowing anything about them except that they were small molecules,” Buck noted. “By screening adult animals with this extremely varied panel of compounds, we hoped to identify drugs that could increase lifespan in adults, even though some might have a deleterious effect on the developing animal.”

By identifying drugs that influence lifespan, Buck added, it may be possible to home in on how those drugs act and contribute to a growing body of knowledge about the genetic mechanisms of aging.

“Other researchers have done beautiful work using molecular genetic approaches to identify genes involved in aging,” she said. “We decided to take a chemical approach. By finding chemicals that enhance longevity, and then finding the targets of those chemicals, it may be possible to identify additional genes important in aging. In addition, the chemical approach could point to drugs suitable for testing in mammals.”

Buck said that her group has yet to identify what kinds of cells are affected by the drug, because while the serotonin receptors involved are only found on neurons, many types of cells -- not just cells of the nervous system -- have receptors for octopamine.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Serotonin Signaling elegans found identify mianserin octopamine receptor

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>