Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidepressant found to extend lifespan in C. elegans

23.11.2007
A team of scientists led by Howard Hughes Medical Institute (HHMI) investigator Linda B. Buck has found that a drug used to treat depression can extend the lifespan of adult roundworms.

Buck and colleagues Michael Petrascheck and Xiaolan Ye report in the November 22, 2007, issue of the journal Nature, that the antidepressant drug mianserin can extend the lifespan of the nematode Caenorhabditis elegans by about 30 percent.

Intriguingly, the drug may act by mimicking the effects of caloric restriction, which has been shown to retard the effects of aging in a variety of animals ranging from worms and flies to mammals.

“Our studies indicate that lifespan extension by mianserin involves mechanisms associated with lifespan extension by dietary restriction,” said Buck, a member of the Basic Sciences Division of the Fred Hutchinson Cancer Research Center in Seattle. “We don't have an explanation for this. All we can say is that if we give the drug to caloric restricted animals, it doesn't increase their lifespan any further. That suggests the same mechanism may be involved.”

Researchers don’t yet understand exactly how mianserin staves off the effects of aging. But the drug appears to act the same way in both C. elegans and humans: by blocking certain receptors for the neurotransmitter serotonin. Serotonin is a chemical that cells use to communicate, helping them regulate many functions, including mood, appetite, and sensory perception.

Buck said it was a surprise to find that a drug used to treat depression in humans could extend lifespan in worms. The researchers in Buck’s lab found that in addition to inhibiting certain serotonin receptors in the worm, it also blocked receptors for another neurotransmitter, octopamine.

A number of observations support the idea that serotonin and octopamine may complement one another in a physiological context, Buck explained, with serotonin signaling the presence of food and octopamine signaling its absence or a state of starvation. C. elegans, for instance, usually only lays eggs when food is on hand. But serotonin stimulates egg laying in the absence of food, while octopamine inhibits egg laying even when food is nearby. Another example of interplay between the two chemicals is that pharyngeal pumping, the mechanism by which worms ingest food, is jump-started by serotonin and thwarted by octopamine.

“In our studies, mianserin had a much greater inhibitory effect on the serotonin receptor than the octopamine receptor,” she said. “One possibility is that there is a dynamic equilibrium between serotonin and octopamine signaling and the drug tips the balance in the direction of octopamine signaling, producing a perceived, though not real, state of starvation that activates aging mechanisms downstream of dietary restriction.”

Buck and her colleagues chose to focus on the effects of mianserin based on the results of a search through 88,000 chemicals for agents that extended the lifespan of nematodes. They found 115 such chemicals. In follow-up studies of one chemical, they found four additional compounds, including mianserin, that extended lifespan by 20-33 percent. All four compounds inhibit certain types of serotonin receptors in humans.

“We screened a wide variety of chemicals without knowing anything about them except that they were small molecules,” Buck noted. “By screening adult animals with this extremely varied panel of compounds, we hoped to identify drugs that could increase lifespan in adults, even though some might have a deleterious effect on the developing animal.”

By identifying drugs that influence lifespan, Buck added, it may be possible to home in on how those drugs act and contribute to a growing body of knowledge about the genetic mechanisms of aging.

“Other researchers have done beautiful work using molecular genetic approaches to identify genes involved in aging,” she said. “We decided to take a chemical approach. By finding chemicals that enhance longevity, and then finding the targets of those chemicals, it may be possible to identify additional genes important in aging. In addition, the chemical approach could point to drugs suitable for testing in mammals.”

Buck said that her group has yet to identify what kinds of cells are affected by the drug, because while the serotonin receptors involved are only found on neurons, many types of cells -- not just cells of the nervous system -- have receptors for octopamine.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Serotonin Signaling elegans found identify mianserin octopamine receptor

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>