Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel plants' natural defenses

23.11.2007
A team of researchers, led by the University of Sheffield and Queen Mary, University of London, has discovered how plants protect their leaves from damage by sunlight when they are faced with extreme climates. The new findings, which have been published in Nature, could have implications both for adapting plants to the threat of global warming and for helping man better harness solar energy.

Photosynthesis in plants relies upon the efficient collection of sunlight. This process can work even at low levels of sunlight, when plants are in the shade or under cloud cover for example. However, when the sun is very bright or when it is cold or very dry, the level of light energy absorbed by leaves can be greatly in excess of that which can be used in photosynthesis and can destroy the plant. However, plants employ a remarkable process called photoprotection, in which a change takes place in the leaves so that the excess light energy is converted into heat, which is harmlessly dispersed.

Until now, researchers hadn’t known exactly how photoprotection works. By joining forces with their physicist colleagues in France and the Netherlands, the UK team have determined how this process works. They were able to show how a small number of certain key molecules, hidden among the millions of others in the plant leaf, change their shape when the amount of light absorbed is excessive; and they have been able to track the conversion of light energy to heat that occurs in less than a billionth of a second.

Many plant species can successfully inhabit extreme environments where there is little water, strong sunlight, low fertility and extremes of temperature by having highly tuned defence mechanisms, including photoprotection. However, these mechanisms are frequently poorly developed in crop plants since they are adapted for high growth and productivity in an environment manipulated by irrigation, fertilisation, enclosure in greenhouses and artificial shading. These manipulations are not sustainable, they have high energy costs and may not be adaptable to an increasingly unstable climate. Researchers believe that in the future, the production of both food and biofuel from plants needs to rely more on their natural defence mechanisms, including photoprotection.

... more about:
»mechanisms »photoprotection »sunlight

Professor Horton, of the University of Sheffield’s Department of Molecular Biology and Biotechnology, who lead the UK team, said: “These results are important in developing plants with improved photoprotective mechanisms to enable them to better cope with climate change. This may be hugely significant in our fight against global warming. It is a fantastic example of what can be achieved in science when the skills of biologists and physicists are brought together.”

Moreover, there are other global implications of this research. Dr Alexander Ruban of Queen Mary's School of Biological and Chemical Sciences, comments: “As we seek to develop new solar energy technology it will be important to not only understand, but to mimic the way biology has learnt to optimise light collection in the face of the continually changing intensity of sunlight.”

Lindsey Bird | EurekAlert!
Further information:
http://www.sheffield.ac.uk

Further reports about: mechanisms photoprotection sunlight

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>