Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk scientists identify key nerve navigation pathway

23.11.2007
A mutation named Magellan steers nerve cells off course

Newly launched nerve cells in a growing embryo must chart their course to distant destinations, and many of the means they use to navigate have yet to surface. In a study published in the current issue of the journal Neuron, scientists at the Salk Institute for Biological Studies have recovered a key signal that guides motor neurons – the nascent cells that extend from the spinal cord and must find their way down the length of limbs such as arms, wings and legs.

The Salk study, led by Samuel Pfaff, Ph.D, a professor in the Gene Expression Laboratory, identifies a mutation they christened Magellan, after the Portuguese mariner whose ship Victoria was first to circumnavigate the globe. The Magellan mutation occurs in a gene that normally pilots motor neurons on the correct course employing a newly discovered mechanism, their results demonstrate.

In the mutants, growing neurons can be seen leaving the spinal cord normally but then appear to lose direction. The elongating cells develop “kinks” and sometimes fold back on themselves or become entwined in a spiral, forming coils outside the spinal cord. “They appear to become lost in a traffic roundabout,” described Pfaff, who observed the growing neurons with fluorescent technology.

... more about:
»Axon »Magellan »Mutation »Nerve »Neuron »cone »receptor

Understanding how motor neurons reach the appropriate targets is necessary for the implementation of novel therapies, including embryonic stem cell replacement for the treatment of presently incurable disorders such as Lou Gehrig’s disease, in which motor neurons undergo irreversible decay.

“Embryonic studies provide useful insights on how to replicate the system in an adult,” said Pfaff. And, as he also pointed out, the mechanisms used by motor neurons are likely to be similar to those used in other parts of the central nervous system, such as the brain. The Magellan mutation discovered by Pfaff’s group was found in mice, but the affected gene, called Phr1, has also been identified in other model systems, including fruit flies and the worm species C. elegans.

A growing nerve bears at its bow a structure called the growth cone, a region rich in the receptor molecules whose job is to receive cues from the environment, much as ancient mariners who observed the stars and set their course accordingly. During development, the growth cone continuously pushes forward, while the lengthening neuron behind it matures into the part of the cell called the axon. Once the growing cell “lands” at its target in a muscle cell, it is the axon that will relay the messages that allow an animal to control and move its limbs at will.

In Magellan mutants, Pfaff’s team discovered that the growth cone becomes disordered. Rather than forming a distinct “cap” on the developing neuron, the cone is dispersed in pieces along both the forward end and the axon extending behind it.

“The defect is found in the structure of the neuron itself,” said Pfaff, noting that the fundamental pieces, such as the receptors capable of reading cues, all seem to be present. Without the correct orientation of receptors, however, signals cannot be read accurately, resulting in growth going off course.

“A precise gradient normally exists across the cone,” said Pfaff, “which is disrupted in the Magellan mutants.” As a result, cells lose their polarity. They literally do not know the front end from the back end, according to Pfaff. This sense of polarity is a universal feature common to all growing neurons. Therefore, “Phr1 is likely to play a role in most growing neurons to ensure their structure is retained at the same time they are growing larger,” he said.

Pfaff and his group identified Magellan using a novel system they had developed, in which individual motor neurons and axons can be visualized fluorescently. They were able to screen more than a quarter of a million mutations, and the mutations of interest were rapidly mapped to known genes as a result of the availability of the sequenced mouse genome – a byproduct of the effort to sequence entire genomes such as that in the human.

The Magellan mutation is located in a gene known as Phr1, which is also active in other parts of the nervous system, indicating that it most likely functions to steer other types of neurons, such as those that enervate sensory organs or connect different regions of the brain. Studies of Magellan may therefore shed light on how a variety of neurological disorders might be treated with cell replacement strategies.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Axon Magellan Mutation Nerve Neuron cone receptor

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>