Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DASGIP AG optimizes its cultivation system to conditions of anaerobic micro-organisms and thus facilitates biofuel development

05.09.2007
DASGIP AG, a leading manufacturer of parallel bioreactor systems, has optimized its technology for the process development of anaerobic microorganisms via their parallel design. Through this type of parallel control and monitoring, a more efficient development of biofuels like bioethanol is facilitated. DASGIP will present these fermentation control systems during the Biotechnica 2007 in Hanover.

Bioethanol is produced by a variety of micro-organisms under anaerobic conditions, i.e. in the absence of oxygen. For biotechnical methods of fuel production to be competitive with conventional procedures, it is necessary to use such variants of micro-organisms whose enzymes can produce biofuels at low temperatures, with a high pH tolerance, and with minimal energy consumption. With this goal in mind, DASGIP has optimized its parallel bioreactor systems: The user can ferment and compare several different micro-organisms under the same conditions (screening), or the same micro-organism can be compared under different conditions (optimization). The system allows continuous monitoring of important variables such as pH value and redox potential, gassing parameters and temperature.

The separate measuring of pH and redox potential is particularly important. In anaerobic metabolism of micro-organisms a negative redox potential is essential for specific enzyme activities. As even small changes in pH can influence the redox potential, one can see how the pH value is an important parameter that must be monitored individually. DASGIP’s PH4RD4 module can measure redox potential and pH simultaneously and individually in four reactors. By controlling these conditions with very high precision, the identification of the ideal reaction parameters for the cells is simplified. The information density accelerates the selection of strains and the best fermentation parameters. In addition, the gassing module MF4 supplies the bioreactor with up to four input gasses. Each gas has its own independent lead, which can be selected as necessary. The user can even combine gasses that react with each other in the same gassing system and thus optimize the conditions of testing.

DASGIP’s parallel bioreactor systems are already used worldwide in industrial biotechnology. One example is in the field of enzyme technology and biocatalysis. Professor Mani Subramanian, Director of the Center for Biocatalysis and Bioprocessing at the University of Iowa, utilizes the DASGIP fermentation system in the field of enzyme technology: This is being done in two steps. First, the Pichia biomass and enzyme expression is optimized by monitoring and controlling pH, temperature, oxygen and enzyme induction by methanol. In a second step the product yield with the Pichia cells is maximized by “reaction engineering” in the DASGIP system. The enzyme system they are working with is glycolate oxidase. The research activities of Professor Dirk Weuster-Botz from the Technical University of Munich, Germany, which has already been presented by DASGIP, are addressed to the development of alternative procedures in industrial biotechnology as well. The project is supported by the Deutsche Bundesstiftung Umwelt (DBU, one of Europe's largest foundations promoting innovative and exemplary environmental projects). The goal is to develop a fermentation process for the industrial production of succinic acid in Sacharomyces cerevisiae. Succinic acid is an important chemical resource which is used widely in the pharmaceutical and chemical industry.

Background

Within the industrial biotechnology, a big challenge for science and industry has recently emerged: How to identify new anaerobic micro-organisms that are able to produce biofuels from organic substrates efficiently and economically. In its resolution to decrease the yearly CO2 emission, the European Commission has decided that by 2010, at least 5.75% of the total fuel consumption in the EU should come from biological sources. This corresponds to about 27 billion litres of biofuel. In the USA, it is intended to increase the admixture of bioethanol up to 17% by 2017. This breaks an important operational area to DASGIP’s parallel bioreactor systems, in a market with a high growth potential. At the Biotechnica in Hanover (9 - 11 October 2007, booth G25, hall 9) DASGIP will present a fermentation system optimized for anaerobic microbiology.

About DASGIP

DASGIP AG develops and manufactures technologically advanced Parallel Bioreactor Systems for the cultivation of microbial and mammalian cells at bench top and pilot scale. Process engineers, scientists and product developers from biotechnological, pharmaceutical and chemical companies as well as research institutions use DASGIP Parallel Bioreactor Systems for their biotechnological processes and benefit from increased productivity, high reproducibility, and ease of scale up, resulting in accelerated product development cycles. DASGIP is located in Juelich (Germany) and Shrewsbury MA (USA).

Contact
Jennefer Vogt, DASGIP AG, Tel: +49 2461.980 -118, j.vogt@dasgip.de
Dr. Holger Bengs, Biotech Consulting, Tel: +49 69. 61994 273, info@holgerbengs.de

Professor Mani Subramanian, University of Iowa, manisubr@engineering.uiowa.edu

DASGIP AG
Rudolf-Schulten-Str. 5
D – 52428 Jülich
Phone: +49 2461.980.0
Fax: +49 2461.980.100
info@dasgip.de

Jennefer Vogt | DASGIP AG
Further information:
http://www.dasgip.com

Further reports about: Development Fermentation anaerobic bioreactor conditions micro-organism optimized redox

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>