Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DASGIP AG optimizes its cultivation system to conditions of anaerobic micro-organisms and thus facilitates biofuel development

DASGIP AG, a leading manufacturer of parallel bioreactor systems, has optimized its technology for the process development of anaerobic microorganisms via their parallel design. Through this type of parallel control and monitoring, a more efficient development of biofuels like bioethanol is facilitated. DASGIP will present these fermentation control systems during the Biotechnica 2007 in Hanover.

Bioethanol is produced by a variety of micro-organisms under anaerobic conditions, i.e. in the absence of oxygen. For biotechnical methods of fuel production to be competitive with conventional procedures, it is necessary to use such variants of micro-organisms whose enzymes can produce biofuels at low temperatures, with a high pH tolerance, and with minimal energy consumption. With this goal in mind, DASGIP has optimized its parallel bioreactor systems: The user can ferment and compare several different micro-organisms under the same conditions (screening), or the same micro-organism can be compared under different conditions (optimization). The system allows continuous monitoring of important variables such as pH value and redox potential, gassing parameters and temperature.

The separate measuring of pH and redox potential is particularly important. In anaerobic metabolism of micro-organisms a negative redox potential is essential for specific enzyme activities. As even small changes in pH can influence the redox potential, one can see how the pH value is an important parameter that must be monitored individually. DASGIP’s PH4RD4 module can measure redox potential and pH simultaneously and individually in four reactors. By controlling these conditions with very high precision, the identification of the ideal reaction parameters for the cells is simplified. The information density accelerates the selection of strains and the best fermentation parameters. In addition, the gassing module MF4 supplies the bioreactor with up to four input gasses. Each gas has its own independent lead, which can be selected as necessary. The user can even combine gasses that react with each other in the same gassing system and thus optimize the conditions of testing.

DASGIP’s parallel bioreactor systems are already used worldwide in industrial biotechnology. One example is in the field of enzyme technology and biocatalysis. Professor Mani Subramanian, Director of the Center for Biocatalysis and Bioprocessing at the University of Iowa, utilizes the DASGIP fermentation system in the field of enzyme technology: This is being done in two steps. First, the Pichia biomass and enzyme expression is optimized by monitoring and controlling pH, temperature, oxygen and enzyme induction by methanol. In a second step the product yield with the Pichia cells is maximized by “reaction engineering” in the DASGIP system. The enzyme system they are working with is glycolate oxidase. The research activities of Professor Dirk Weuster-Botz from the Technical University of Munich, Germany, which has already been presented by DASGIP, are addressed to the development of alternative procedures in industrial biotechnology as well. The project is supported by the Deutsche Bundesstiftung Umwelt (DBU, one of Europe's largest foundations promoting innovative and exemplary environmental projects). The goal is to develop a fermentation process for the industrial production of succinic acid in Sacharomyces cerevisiae. Succinic acid is an important chemical resource which is used widely in the pharmaceutical and chemical industry.


Within the industrial biotechnology, a big challenge for science and industry has recently emerged: How to identify new anaerobic micro-organisms that are able to produce biofuels from organic substrates efficiently and economically. In its resolution to decrease the yearly CO2 emission, the European Commission has decided that by 2010, at least 5.75% of the total fuel consumption in the EU should come from biological sources. This corresponds to about 27 billion litres of biofuel. In the USA, it is intended to increase the admixture of bioethanol up to 17% by 2017. This breaks an important operational area to DASGIP’s parallel bioreactor systems, in a market with a high growth potential. At the Biotechnica in Hanover (9 - 11 October 2007, booth G25, hall 9) DASGIP will present a fermentation system optimized for anaerobic microbiology.


DASGIP AG develops and manufactures technologically advanced Parallel Bioreactor Systems for the cultivation of microbial and mammalian cells at bench top and pilot scale. Process engineers, scientists and product developers from biotechnological, pharmaceutical and chemical companies as well as research institutions use DASGIP Parallel Bioreactor Systems for their biotechnological processes and benefit from increased productivity, high reproducibility, and ease of scale up, resulting in accelerated product development cycles. DASGIP is located in Juelich (Germany) and Shrewsbury MA (USA).

Jennefer Vogt, DASGIP AG, Tel: +49 2461.980 -118,
Dr. Holger Bengs, Biotech Consulting, Tel: +49 69. 61994 273,

Professor Mani Subramanian, University of Iowa,

Rudolf-Schulten-Str. 5
D – 52428 Jülich
Phone: +49 2461.980.0
Fax: +49 2461.980.100

Jennefer Vogt | DASGIP AG
Further information:

Further reports about: Development Fermentation anaerobic bioreactor conditions micro-organism optimized redox

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>