Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grubby filters for fresher water

23.11.2007
Scientists in Australia have discovered that the older the water filter the better when it comes to reducing the off-putting earthy taste of some tap water.

Writing in the Inderscience publication International Journal of Environment and Waste Management, the team explains how bacteria that grow on particles in a sand filter effectively extract the compounds that produce the taste.

Natural earthy and musty smells in our drinking water are not usually a health risk, but many consumers prefer a fresher taste. This represents an ongoing challenge to the water companies.

"Although adverse odours do not present a risk to human health, their presence often leads to a misconception that the water is unsafe for drinking," explains Gayle Newcombe, Research Leader at the Applied Chemistry Unit of the Australian Water Quality Centre in Salisbury, South Australia.

... more about:
»Biofilm »Water »geosmin

She and her colleagues have investigated the effect of sand filters in extracting the most common earthy molecules, geosmin and methylisoborneol, from the water supply. These two compounds occur naturally in water and are non-toxic.

Newcombe and her colleagues at the Australian Water Quality Centre and Bridget McDowall in the School of Chemical Engineering at The University of Adelaide have now demonstrated that they can remove geosmin and MIB using biologically active sand filters. In such filters, the particles of sand are allowed to accumulate a biological film of beneficial bacteria that absorb and break down the biodegradable odour molecules.

The team tested sand filter material taken from working water treatment plants. They found that sand taken from a 26-year old filter had a well-established biofilm and was able to remove any detectable traces of geosmin and MIB in less than two weeks. Fresh filter sand with no biofilm, in contrast, was essentially ineffective, removing less than two-thirds of the geosmin and MIB even after several months of operation.

The team is now investigating how to accelerate the development of active biofilms for water purification.

Jim Corlett | alfa
Further information:
http://www.inderscience.com/link.php?id=15685

Further reports about: Biofilm Water geosmin

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>