Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Mathematical Explanation For Precision Of Trinucleotide Hereditary Diseases

23.11.2007
Scientists at the Weizmann Institute have proposed a mechanism which explains the precision of prognoses for trinucleotide repeat diseases. The study, published on November 23 in the journal PLoS Computational Biology, may lead researchers in the direction of a possible prevention or cure.

Based on the literature on some twenty known trinucleotide repeat diseases and their knowledge of the mechanisms governing somatic mutation, the team has proposed a mechanism that explains the precise relations between the patient's age of onset and the number of repeats in the diseased gene in the patient's genome. Using computer simulations and mathematical analysis of the mechanism the scientists have characterized the way in which the disease progresses.

Trinucleotide hereditary diseases are known as “time bomb” diseases, as people who live with them have a predictable onset of suffering and eventual death in adulthood. These diseases are caused by an unusual genetic mutation: A three-letter piece of gene code is repeated over and over in one gene. Scientists can predict by how many times the sequence repeats in a patient's gene both the age at which the disease will appear and how quickly the disease will progress.

The basic assumption has been that the protein fragment containing the amino acid (glutamine) encoded in the repeating triplet slowly builds up in the cells until eventually reaching toxic levels. This theory, unfortunately, fails to explain some of the clinical data.

... more about:
»EXPLAIN »Mutation »mechanism

The Weizmann Institute scientists, led by Ehud Shapiro, show that the answer lies in somatic mutations – changes in the number of DNA repeats that build up in our cells throughout our lives. The longer the DNA sequence, the greater the chance of additional mutation. The scientists realized that the genes carrying the disease code might be accumulating more and more DNA repeats over time, until some critical threshold is crossed.

These findings suggest that a cure for all might be found in a drug or treatment that slows down the expansion process, if researchers are successful in using this new model.

Andrew Hyde | alfa
Further information:
http://ploscompbiol.org
http://pathogens.plosjournals.org/perlserv/?request=get-document&doi= 10.1371/

Further reports about: EXPLAIN Mutation mechanism

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>