Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Mathematical Explanation For Precision Of Trinucleotide Hereditary Diseases

23.11.2007
Scientists at the Weizmann Institute have proposed a mechanism which explains the precision of prognoses for trinucleotide repeat diseases. The study, published on November 23 in the journal PLoS Computational Biology, may lead researchers in the direction of a possible prevention or cure.

Based on the literature on some twenty known trinucleotide repeat diseases and their knowledge of the mechanisms governing somatic mutation, the team has proposed a mechanism that explains the precise relations between the patient's age of onset and the number of repeats in the diseased gene in the patient's genome. Using computer simulations and mathematical analysis of the mechanism the scientists have characterized the way in which the disease progresses.

Trinucleotide hereditary diseases are known as “time bomb” diseases, as people who live with them have a predictable onset of suffering and eventual death in adulthood. These diseases are caused by an unusual genetic mutation: A three-letter piece of gene code is repeated over and over in one gene. Scientists can predict by how many times the sequence repeats in a patient's gene both the age at which the disease will appear and how quickly the disease will progress.

The basic assumption has been that the protein fragment containing the amino acid (glutamine) encoded in the repeating triplet slowly builds up in the cells until eventually reaching toxic levels. This theory, unfortunately, fails to explain some of the clinical data.

... more about:
»EXPLAIN »Mutation »mechanism

The Weizmann Institute scientists, led by Ehud Shapiro, show that the answer lies in somatic mutations – changes in the number of DNA repeats that build up in our cells throughout our lives. The longer the DNA sequence, the greater the chance of additional mutation. The scientists realized that the genes carrying the disease code might be accumulating more and more DNA repeats over time, until some critical threshold is crossed.

These findings suggest that a cure for all might be found in a drug or treatment that slows down the expansion process, if researchers are successful in using this new model.

Andrew Hyde | alfa
Further information:
http://ploscompbiol.org
http://pathogens.plosjournals.org/perlserv/?request=get-document&doi= 10.1371/

Further reports about: EXPLAIN Mutation mechanism

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>