Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find monkeys able to fend off AIDS-like symptoms with enhanced HIV vaccine

22.11.2007
Findings could point to novel ways to boost immune response in humans

Researchers at the University of Pennsylvania School of Medicine have discovered that using an immune system gene to enhance a vaccine used to study HIV in macaque monkeys provides the animals with greater protection against simian HIV (SHIV) than an unmodified vaccine. This multi-year study found that the addition of a molecule called Interleukin-15 effectively boosts the effects of a vaccine derived from the DNA of simian HIV. The study illustrates that DNA vaccine effectiveness can be improved by the inclusion of specific immune adjuvants, or helpers.

The findings are published in last week’s online edition of the Proceedings of the National Academy of Sciences.

“DNA vaccine technology has great promise for the development of vaccines and immune therapeutics for a variety of infectious diseases and cancers,” says senior author David B. Weiner, PhD, Professor of Pathology and Laboratory Medicine at Penn. While previous studies have established that the technology can induce immune responses safely, “improving the immune potency of this platform is critical for further development in humans.”

... more about:
»DNA »HIV »Vaccine »immune

The research builds on previous work aimed at engineering a more potent immune response to SHIV DNA vaccine technology. Mouse model studies previously showed that the cytokine IL-15 -- a substance that can improve the body's natural response to infection and disease -- helps better immune responses and protection, while this study mirrors those findings in a larger, non-human primate species.

In this study, the group of macaques that was injected with the vaccine containing a loop of DNA enabling them to make IL-15 developed no signs of AIDS-like symptoms when exposed to live SHIV, compared to four animals in the control group that received only the DNA vaccine. The modified vaccine appeared to help suppress viral replication among the IL-15 group.

Next, Weiner’s team will study the protected macaques to determine the actual mechanism of their protection, and seek out any pockets of the virus that may be hiding in specific immune compartments. The approach will also be tested for safety and immunogenicity in humans through the HIV Vaccine Trials Network.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: DNA HIV Vaccine immune

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>