Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ripening secrets of the vine revealed

22.11.2007
Whether you prefer a Cabernet Sauvignon or a Pinot Noir grape variety, two new research articles published in the online open access journal, BMC Genomics, offer a host of new genetic information on fruit ripening for this economically important fruit crop.

The grapevine's gene expression analysis reveals two distinct molecular and functional phases that correspond with the green and red grape stages. And researchers have reported the first biochemical evidence that reactive oxygen species accumulate during the colour transition. Stefania Pilati and fellow researchers from the IASMA Research Center, San Michele all'Adige, Italy, investigated ripening Pinot Noir grapes (Vitis vinifera L.) to identify fruit ripening genes and investigate seasonal influences. They found a core set of more than 1,400 ripening-specific genes that fluctuated similarly across three growing seasons and a smaller gene group strongly influenced by climatic conditions.

During the green berry (pre-véraison) phase, numerous genes involved in hormonal signalling and transcriptional regulation were modulated, suggesting large-scale cellular metabolism reprogramming. Auxin, ethylene and light played pivotal roles. During the following ripening (post-véraison) phase, genes for cell-wall organization and biogenesis, carbohydrate and secondary metabolisms, and stress response came into play, whereas photosynthesis was strongly repressed. These transcriptional events tally with the processes of berry softening and accumulation of sugar, colour and aroma compounds, which ultimately determine berry and wine quality. At véraison, the intervening point when grapes slow down their growth and change colour, this study highlighted an oxidative burst involving hydrogen peroxide (H2O2), and an extensive modulation of the enzymatic anti-oxidative network.

Meanwhile, Laurent G. Deluc and colleagues from the University of Nevada, Reno and the Boston University School of Medicine, USA, took a closer look at the V. vinifera Cabernet Sauvignon variety, surveying seven different stages of grape berry development. The team mapped pronounced differences throughout development in messenger-RNA (mRNA) expression for genes that play key functional roles in a host of processes. These included organic and amino acid metabolism, photosynthesis, circadian cycles and pathogen resistance.

... more about:
»Development »Expression »metabolism »ripening

In particular, the researchers recorded changes associated with transcription factor expression patterns, abscisic acid (ABA) biosynthesis, and calcium signalling genes that identified candidate factors likely to participate in véraison, or aroma compound production, and in pathway regulation and sequestration of flavonoid compounds. Some mRNAs were observed to decrease or increase specifically throughout ripening and sugar metabolism gene expression pattern analysis revealed an alternative and previously uncharacterised pathway for glucose and triose phosphate production invoked from véraison to mature berries.

Despite the grapevine's importance, genetic cues underlying the biochemical and physical changes during berry and flavour development have lain undiscovered - until now. "The large number of regulatory genes we have identified represents a powerful new resource for dissecting the mechanisms of fruit ripening control in non-climacteric plants", Pilati and co-workers say. Meanwhile, the second team say they have identified "a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing".

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcgenomics/

Further reports about: Development Expression metabolism ripening

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>