Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioclocks work by controlling chromosome coiling

22.11.2007
There is a new twist on the question of how biological clocks work.

In recent years, scientists have discovered that biological clocks help organize a dizzying array of biochemical processes in the body. Despite a number of hypotheses, exactly how the microscopic pacemakers in every cell in the body exert such a widespread influence has remained a mystery.

Now, a new study provides direct evidence that biological clocks can influence the activity of a large number of different genes in an ingenious fashion, simply by causing chromosomes to coil more tightly during the day and to relax at night.

“The idea that the whole genome is oscillating is really cool,” enthuses Vanderbilt Professor of Biological Sciences Carl Johnson, who headed the research that was published online Nov. 13 in the Proceedings of the National Academy of Sciences. “The fact that oscillations can act as a regulatory mechanism is telling us something important about how DNA works: It is something DNA jockeys really need to think about.”

Johnson’s team, which consisted of Senior Lecturer Mark A Woelfle, Assistant Research Professor Yao Xu and graduate student Ximing Qin, performed the study with cyanobacteria (blue-green algae), the simplest organism known to possess a biological clock.

The chromosomes in cyanobacteria are organized in circular molecules of DNA. In their relaxed state, they form a single loop. But, within the cell, they are usually “supercoiled” into a series of small helical loops. There are even two families of special enzymes, called gyrases and topoisomerases, whose function is coiling and uncoiling DNA.

The researchers focused on small, non-essential pieces of DNA in the cyanobacteria called plasmids that occur naturally in the cyanobacteria. Because a plasmid should behave in the same fashion as the larger and more unwieldy chromosome, the scientists consider it to be a good proxy of the behavior of the chromosome itself.

When the plasmid is relaxed, it is open and uncoiled and, when it is supercoiled, it is twisted into a smaller, more condensed state. So, the researchers used a standard method, called gel electrophoresis, to measure the extent of a plasmid’s supercoiling during different points in the day/night cycle.

The researchers found a distinct day/night cycle: The plasmid is smaller and more tightly wound during periods of light than they are during periods of darkness. They also found that this rhythmic condensation disappears when the cyanobacteria are kept in constant darkness.

“This is one of the first pieces of evidence that the biological clock exerts its effect on DNA structure through the coiling of the chromosome and that this, in turn, allows it to regulate all the genes in the organism,” says Woelfle.

Some cyanobacteria use their biological clocks to control two basic processes. During the day, they use photosynthesis to turn sunlight into chemical energy. During the night, they remove nitrogen from the atmosphere and incorporate it into a chemical compound that they can use to make proteins.

According to the Johnson lab’s “oscilloid model,” the genes that are involved in photosynthesis should be located in regions of the chromosome that are “turned on” by the tighter coiling in the DNA during the day and “turned off” during the night when the DNA is more relaxed. By the same token, the genes that are involved in nitrogen fixation should be located in regions of the chromosome that are “turned off” during the day when the DNA is tightly coiled and “turned on” during the night when it is more relaxed.

The researchers see no reason why the bioclocks in higher organisms, including humans, do not operate in a similar fashion. “This could be a universal theme that we are just starting to decipher,” says Woelfle.

The DNA in higher organisms is much larger than that in cyanobacteria and it is linear, not circular. Stretched end-to-end, the genome in a mammalian cell is about six feet long. In order to fit into a microscopic cell, the DNA must be tightly packed into a series of small coils, something like microscopic Slinkies.

Previous studies have shown that in higher organisms between 5 to 10 percent of genes in the genome are controlled by the bioclock, compared to 100 percent of genes in the cyanobacteria. In the case of the higher organisms, the bioclock’s control is likely to be local rather than the global situation in cyanobacteria.

With a circular chromosome (as in cyanobacteria), twisting it at any point affects the entire molecule. When you twist a linear chromosome at a certain point, however, the effect only extends for a limited distance in either direction because the ends are not connected. That fits neatly with the idea that the bioclock’s influence on linear chromosomes is limited to certain specific regions, regions where the specific genes that it regulates are located.

The research was supported by the National Institute of General Medical Sciences.

Vanderbilt University is a private research university of approximately 6,300 undergraduates and 4,600 graduate and professional students. Founded in 1873, the University comprises 10 schools, a public policy institute, a distinguished medical center and The Freedom Forum First Amendment Center. Vanderbilt, ranked as one of the nation’s top universities, offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development, and a full range of graduate and professional degrees.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu
http://www.vanderbilt.edu/News

Further reports about: Chromosome Coil DNA Plasmid coiling cyanobacteria genes regions relaxed tightly

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>