Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifesaving Bioteque at the University of Stavanger

21.11.2007
By using revolutionary methods the Plastid Company will produce proteins. Professor Simon Geir Møller heads the company which is the first bioteque company at the University of Stavanger.

The approach for the Plastid Company is to produce great quantities of plastids or mini cells in the plants. There are millions of these cells in each plant and they will function as efficient bio factories. The proteins will be used by research laboratories, the health service, the feed and fish industries and the pharmaceutical industry.

In addition to standard proteins Plastid will also design and produce new proteins and enzymes in demand by the market.

The production of proteins in plastids has until now been difficult, partly because it is a complicated process to put a gene into a plastid and then make a plant grow from this single plant cell.

... more about:
»Kinase »Møller »plastid

By applying our procedures we get the right plant after two to three months. The aim is to shorten the process to one to two months. When we have the plant which produces the protein demanded by the customer, we can simply expand – we will just grow more plants. Møller says.

The Plastid Company can develop products adapted to all illnesses caused by defective proteins. A particularly interesting area is the so-called kinases, proteins which are active in transmission of signals in our body. Defect kinases cause around 400 different serious illnesses from cancer to neurological ailments.

One example is stomach cancer where a special kinase is always switched on. Stomach cancer patients therefore need inhibitors of this kinase. They must be developed continuously since our patients become resistant to inhibitors after a while, Møller explains.

We want to produce kinases in our system which may be used for developing new inhibitors for these patients. We have already managed to produce a kinase, even though this is a process in which success is not easily achieved. It shows that we are able to manage this within our patented system. There is a large market for new proteins in the industry, but the infrastructure has so far been expensive. Plastid's system is robust and the production can easily be increased or reduced, Møller says.

Silje Stangeland | alfa
Further information:
http://www.uis.no/news/article7387-50.html

Further reports about: Kinase Møller plastid

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>