Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lifesaving Bioteque at the University of Stavanger

By using revolutionary methods the Plastid Company will produce proteins. Professor Simon Geir Møller heads the company which is the first bioteque company at the University of Stavanger.

The approach for the Plastid Company is to produce great quantities of plastids or mini cells in the plants. There are millions of these cells in each plant and they will function as efficient bio factories. The proteins will be used by research laboratories, the health service, the feed and fish industries and the pharmaceutical industry.

In addition to standard proteins Plastid will also design and produce new proteins and enzymes in demand by the market.

The production of proteins in plastids has until now been difficult, partly because it is a complicated process to put a gene into a plastid and then make a plant grow from this single plant cell.

... more about:
»Kinase »Møller »plastid

By applying our procedures we get the right plant after two to three months. The aim is to shorten the process to one to two months. When we have the plant which produces the protein demanded by the customer, we can simply expand – we will just grow more plants. Møller says.

The Plastid Company can develop products adapted to all illnesses caused by defective proteins. A particularly interesting area is the so-called kinases, proteins which are active in transmission of signals in our body. Defect kinases cause around 400 different serious illnesses from cancer to neurological ailments.

One example is stomach cancer where a special kinase is always switched on. Stomach cancer patients therefore need inhibitors of this kinase. They must be developed continuously since our patients become resistant to inhibitors after a while, Møller explains.

We want to produce kinases in our system which may be used for developing new inhibitors for these patients. We have already managed to produce a kinase, even though this is a process in which success is not easily achieved. It shows that we are able to manage this within our patented system. There is a large market for new proteins in the industry, but the infrastructure has so far been expensive. Plastid's system is robust and the production can easily be increased or reduced, Møller says.

Silje Stangeland | alfa
Further information:

Further reports about: Kinase Møller plastid

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>