Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnivorous Plants Use Pitchers of “Slimy Saliva” to Catch Their Prey

21.11.2007
Carnivorous plants supplement the meager diet available from the nutrient-poor soils in which they grow by trapping and digesting insects and other small arthropods.

Pitcher plants of the genus Nepenthes were thought to capture their prey with a simple passive trap but in a paper in this week’s PLoS ONE, Laurence Gaume and Yoel Forterre, a biologist and a physicist from the CNRS, working respectively in the University of Montpellier and the University of Marseille, France show that they employ slimy secretions to doom their victims.

They show that the fluid contained inside the plants’ pitchers has the perfect viscoelastic properties to prevent the escape of any small creatures that come into contact with it even when diluted by the heavy rainfall of the forest of Borneo in which they live.

Since Charles Darwin’s time, the mechanism of insect-trapping by Nepenthes pitcher plants from the Asian tropics has intrigued scientists but is still incompletely understood. The slippery inner surfaces of their pitchers have – until now – been considered the key trapping devices, while it was assumed that the fluid secretions were only concerned with digestion. Gaume and Forterre were able to combine their separate expertise in biology and physics to show that the digestive fluid of Nepenthes rafflesiana actually plays a crucial role in prey capture.

The pair took high-speed videos of flies and ants attempting to move through plants’ fluid. Flies quickly became completely coated in the fluid and unable to move even when diluted more than 90% with water. Physical measurements on the fluid showed that this was because this complex fluid generates viscoelastic filaments with high retentive forces that give no chance of escape to any insect that has fallen into it and that is struggling in it. That the viscoelastic properties of the fluid remain strong even when highly diluted is of great adaptive significance for these tropical plants which are often subjected to heavy rainfalls.

For insects, this fluid acts like quicksand: the quicker they move, the more trapped they become. Its constituency is closely akin to mucus or saliva, which, in some reptiles and amphibians, serves a very similar purpose. The exact makeup of this fluid, apparently unique in the plant kingdom, remains to be determined; however, it may point the way to novel, environmentally friendly approaches to pest control.

Citation: Gaume L, Forterre Y (2007) A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants. PLoS ONE 2(11): e1185. doi:10.1371/journal.pone.0001185

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001185

Further reports about: Carnivorous Forterre Gaume Nepenthes Pitcher diluted viscoelastic

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>