Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnivorous Plants Use Pitchers of “Slimy Saliva” to Catch Their Prey

21.11.2007
Carnivorous plants supplement the meager diet available from the nutrient-poor soils in which they grow by trapping and digesting insects and other small arthropods.

Pitcher plants of the genus Nepenthes were thought to capture their prey with a simple passive trap but in a paper in this week’s PLoS ONE, Laurence Gaume and Yoel Forterre, a biologist and a physicist from the CNRS, working respectively in the University of Montpellier and the University of Marseille, France show that they employ slimy secretions to doom their victims.

They show that the fluid contained inside the plants’ pitchers has the perfect viscoelastic properties to prevent the escape of any small creatures that come into contact with it even when diluted by the heavy rainfall of the forest of Borneo in which they live.

Since Charles Darwin’s time, the mechanism of insect-trapping by Nepenthes pitcher plants from the Asian tropics has intrigued scientists but is still incompletely understood. The slippery inner surfaces of their pitchers have – until now – been considered the key trapping devices, while it was assumed that the fluid secretions were only concerned with digestion. Gaume and Forterre were able to combine their separate expertise in biology and physics to show that the digestive fluid of Nepenthes rafflesiana actually plays a crucial role in prey capture.

The pair took high-speed videos of flies and ants attempting to move through plants’ fluid. Flies quickly became completely coated in the fluid and unable to move even when diluted more than 90% with water. Physical measurements on the fluid showed that this was because this complex fluid generates viscoelastic filaments with high retentive forces that give no chance of escape to any insect that has fallen into it and that is struggling in it. That the viscoelastic properties of the fluid remain strong even when highly diluted is of great adaptive significance for these tropical plants which are often subjected to heavy rainfalls.

For insects, this fluid acts like quicksand: the quicker they move, the more trapped they become. Its constituency is closely akin to mucus or saliva, which, in some reptiles and amphibians, serves a very similar purpose. The exact makeup of this fluid, apparently unique in the plant kingdom, remains to be determined; however, it may point the way to novel, environmentally friendly approaches to pest control.

Citation: Gaume L, Forterre Y (2007) A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants. PLoS ONE 2(11): e1185. doi:10.1371/journal.pone.0001185

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001185

Further reports about: Carnivorous Forterre Gaume Nepenthes Pitcher diluted viscoelastic

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>