Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnivorous Plants Use Pitchers of “Slimy Saliva” to Catch Their Prey

21.11.2007
Carnivorous plants supplement the meager diet available from the nutrient-poor soils in which they grow by trapping and digesting insects and other small arthropods.

Pitcher plants of the genus Nepenthes were thought to capture their prey with a simple passive trap but in a paper in this week’s PLoS ONE, Laurence Gaume and Yoel Forterre, a biologist and a physicist from the CNRS, working respectively in the University of Montpellier and the University of Marseille, France show that they employ slimy secretions to doom their victims.

They show that the fluid contained inside the plants’ pitchers has the perfect viscoelastic properties to prevent the escape of any small creatures that come into contact with it even when diluted by the heavy rainfall of the forest of Borneo in which they live.

Since Charles Darwin’s time, the mechanism of insect-trapping by Nepenthes pitcher plants from the Asian tropics has intrigued scientists but is still incompletely understood. The slippery inner surfaces of their pitchers have – until now – been considered the key trapping devices, while it was assumed that the fluid secretions were only concerned with digestion. Gaume and Forterre were able to combine their separate expertise in biology and physics to show that the digestive fluid of Nepenthes rafflesiana actually plays a crucial role in prey capture.

The pair took high-speed videos of flies and ants attempting to move through plants’ fluid. Flies quickly became completely coated in the fluid and unable to move even when diluted more than 90% with water. Physical measurements on the fluid showed that this was because this complex fluid generates viscoelastic filaments with high retentive forces that give no chance of escape to any insect that has fallen into it and that is struggling in it. That the viscoelastic properties of the fluid remain strong even when highly diluted is of great adaptive significance for these tropical plants which are often subjected to heavy rainfalls.

For insects, this fluid acts like quicksand: the quicker they move, the more trapped they become. Its constituency is closely akin to mucus or saliva, which, in some reptiles and amphibians, serves a very similar purpose. The exact makeup of this fluid, apparently unique in the plant kingdom, remains to be determined; however, it may point the way to novel, environmentally friendly approaches to pest control.

Citation: Gaume L, Forterre Y (2007) A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants. PLoS ONE 2(11): e1185. doi:10.1371/journal.pone.0001185

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001185

Further reports about: Carnivorous Forterre Gaume Nepenthes Pitcher diluted viscoelastic

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>