Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carnivorous Plants Use Pitchers of “Slimy Saliva” to Catch Their Prey

Carnivorous plants supplement the meager diet available from the nutrient-poor soils in which they grow by trapping and digesting insects and other small arthropods.

Pitcher plants of the genus Nepenthes were thought to capture their prey with a simple passive trap but in a paper in this week’s PLoS ONE, Laurence Gaume and Yoel Forterre, a biologist and a physicist from the CNRS, working respectively in the University of Montpellier and the University of Marseille, France show that they employ slimy secretions to doom their victims.

They show that the fluid contained inside the plants’ pitchers has the perfect viscoelastic properties to prevent the escape of any small creatures that come into contact with it even when diluted by the heavy rainfall of the forest of Borneo in which they live.

Since Charles Darwin’s time, the mechanism of insect-trapping by Nepenthes pitcher plants from the Asian tropics has intrigued scientists but is still incompletely understood. The slippery inner surfaces of their pitchers have – until now – been considered the key trapping devices, while it was assumed that the fluid secretions were only concerned with digestion. Gaume and Forterre were able to combine their separate expertise in biology and physics to show that the digestive fluid of Nepenthes rafflesiana actually plays a crucial role in prey capture.

The pair took high-speed videos of flies and ants attempting to move through plants’ fluid. Flies quickly became completely coated in the fluid and unable to move even when diluted more than 90% with water. Physical measurements on the fluid showed that this was because this complex fluid generates viscoelastic filaments with high retentive forces that give no chance of escape to any insect that has fallen into it and that is struggling in it. That the viscoelastic properties of the fluid remain strong even when highly diluted is of great adaptive significance for these tropical plants which are often subjected to heavy rainfalls.

For insects, this fluid acts like quicksand: the quicker they move, the more trapped they become. Its constituency is closely akin to mucus or saliva, which, in some reptiles and amphibians, serves a very similar purpose. The exact makeup of this fluid, apparently unique in the plant kingdom, remains to be determined; however, it may point the way to novel, environmentally friendly approaches to pest control.

Citation: Gaume L, Forterre Y (2007) A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants. PLoS ONE 2(11): e1185. doi:10.1371/journal.pone.0001185

Andrew Hyde | alfa
Further information:

Further reports about: Carnivorous Forterre Gaume Nepenthes Pitcher diluted viscoelastic

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>