Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish helps geologists

20.11.2007
The valuable food fish – Antarctic toothfish (D. mawsoni) – can be used as a bottom dredge with a large collection area. Such proposal was made by the specialists of the All-Russian Research Institute of Fish Industry and Oceanography and the Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements. It makes no difference to the toothfish as the fish swallows stones all the same.

The Antarctic toothfish is a big fish about 135 centimeters long, its average weight making 35 kilograms (although some specimens are known to have an adult man’s parameters: 190 centimeters and 80 kilograms). The toothfish inhabits antarctic waters of the Atlantic and the Indian Oceans southward of the 58th parallel. It can be also found near the coast, and in the open ocean, at the bottom and in mid-water. The Antarctic toothfish was named so for its big mouth full of fang-like teeth. It is a predator, which feeds on squids and fish, but the toothfish itself makes part of the menu of ? sperm-whale and, certainly, of human beings. Such noticeable and useful fish attracted attention of biologists who found stones in the toothfish stomach, the stones being rather heavy, up to half a kilo. Frequency of stomachic stones discovery depends on the fish size. The toothfish shorter than 80 centimeters have no stones in the stomach, stone occurrence with longer fish varies from 0.7% through 1.1%, and with the fish longer than a meter the occurrence increases up to 2.7-3%.

The researchers have not explained yet why the toothfish needs stones. Probably, the fish uses them for grinding food in the stomach, or perhaps as ballast during its migrations up and down the mid-water. The researchers have suggested that the toothfish stomachic stones should be used for the ground composition analysis of the continental slope and the seabed. These areas are hidden from the researchers by ice, and the toothfish is swimming there and swallowing the stones from the bottom. During two fishing seasons, specialists collected stones from the Antarctic toothfish stomachs in the antarctic Ross Sea and Amundsen Sea. The researchers have assumed that the fish swallows stones without distinction, therefore they can be used for geological characteristic of the oceanic bed.

Even preliminary analysis of stones from the Ross Sea bottom enables to provide qualitative assessment of geological structure of the coastal strip and the continental slope. The toothfish swallowed samples of various rock, at that intrusive rock (diorites, granites and others) noticeably prevails, the second place is taken by metamorphic rock, including quartzites, sandstones, aleurites, limestone and a paleocoral fragment. From the Amundsen Sea bottom, the toothfish picks up mainly metamorphic and sedimentary rock, and most unexpectedly, sterile coal with fragments of fossilized wood, which testifies to different geological structure of adjacent sections. Thus, the Ross Sea area corresponds to a larger extent to the shield?, and the Amundsen Sea area – complies with folded area at the platform outskirts.

... more about:
»Antarctic »Fragment »Researchers »SEA »toothfish

The overwhelming majority of stone fragments extracted from the toothfish stomach are of angular shape, more rarely - of faintly waterworn shape, and only individual fragments have the look of coastal pebble, and one of the fragments from the Ross Sea has glacial hatching traces on its surface. Taking into account discovery of intact coral springs, it can be assumed that ice and sea currents carry stones at short distances. It is difficult to say yet how far fish can carry them, but the toothfish caught in the same region has similar stone “filling” in the stomachs, i.e. the fish collects stones at the same sections. Actually, the Antarctic toothfish has provided the researchers with a low-capacity bottom dredge, which covers the area much larger than that in case of ordinary dredging. Now, geologists will disembowel fish for the benefit of science, not only for their own good.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Antarctic Fragment Researchers SEA toothfish

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>