Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular therapy of a stroke

20.11.2007
Specialists of the “Trans-Technologies” Open Joint-Stock Company, with participation of Scientific Research Institute of Experimental Medicine, Russian Academy of Medical Sciences (St. Petersburg), have tested on rats the capabilities of cellular therapy for ischemic stroke treatment. It has turned out that intravenous transplantation of mesenchymal stem cells restores cerebrum blood supply and protects its nerve cells from death.

Under anaesthetic, the rats’ medium cerebral artery was pinched in order to impair the blood supply in the left hemisphere. Three days later, the animals were intravenously injected the mesenchymal stem cells (MSC) from the marrow.

These cells are able to differentiate into the cells of other tissues, including nerve cells. Part of the animals was false-operated – the operation was performed on them but the artery had not been pinched. The reference group animals’ artery was pinched but the stem cells were not introduced.

The MSCs for transplantation were singled out from the marrow of thigh-bones of other animals of the same laboratory line, the MSCs were marked by a fluorescent dye and injected into the laboratory rats’ caudal vein. The animals’ cerebrum was investigated six weeks later.

... more about:
»MSC »Transplantation »stem cells »stroke »therapy

There turned out to be unexpectedly few luminescent cells in the cerebrum specimen, and they were located not in the affected cortex zone but nearby ventricles of brain. This is strange as the specialists of “Tans-Technologies” have experimentally proved that stem cells introduced into the bloodstream come to the damaged tissue in several days. But nevertheless the stem cells introduction turned out effective for restoration of the affected brain.

The area of affected zone with the experimental rats was less than that with the untreated animals. Transplantation enables to preserve the parts of brain responsible for formation of emotions and motion regulation. With the untreated rats, these sections were noticeably damaged. Their stroke area was surrounded with an extensive zone of dying nerve cells.

The stem cells increased almost by twice the number of blood vessels in the injured left hemisphere, which contributed to cerebral blood supply restoration. It is interesting that more vessels appeared in the symmetrical unaffected hemisphere. This phenomenon has not been described in scientific publications, therefore the researchers are planning to investigate it separately.

Thanks to the stem cells, the rats successfully passed the test in two or three weeks after transplantation. They became calmer, they better orientated themselves in space and memorized disposition of surrounding objects. Besides, the animals restored symmetry of reactions in the left and the right side of the body and in utilization of extremities.

In the researchers’ opinion, the mesenchymal stem cells (MSCs) is practically an ideal material for cellular therapy as they can be introduced directly into the blood. This allows to avoid serious operations under general anaesthetic, which are necessary for cell injection directly into the brain.

Although the researchers are now unable to fully explain the MSCs mechanism of action, but their beneficial action on the brain after a stroke is evident. Possibly, in case of earlier MSC transplantation, more cells will be able to get into the brain, and the beneficial action will be even more apparent.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: MSC Transplantation stem cells stroke therapy

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>