Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research helps explain how tumours go undetected by the body

20.11.2007
Scientists studying how immune cells are regulated in healthy individuals, have made a key discovery in understanding why tumours may go undetected by the immune system and remain untreated by the body's own natural defences. The findings, published online this week (between 19 - 23 November) by the Proceedings of the National Academy of Sciences, could lead to new treatments for tumours.

Under normal circumstances, the immune system creates sustained inflammation around a dangerous pathogen or injury which tells the body that there is a problem. However, in the case of tumours, certain cellular mechanisms counteract inflammation which can cause the tumour to go undetected, making it even harder for the body to expel.

The researchers at King's College London, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), discovered that regulatory T cells can reverse the role of a key immune cell called a macrophage which is normally involved in causing inflammation. Regulatory T cells are cells that regulate the immune system to stop it over-responding to every external stimulus and only deal with genuinely harmful pathogens or injuries. The research shows that they can achieve this by encouraging macrophages to instead dampen down the inflammatory response that is automatically induced by all possible threats to the body, even those that turn out to be harmless.

Dr Leonie Taams, research leader explains: "A relatively harmless stimulus, such as a small cut, will automatically be treated by the body as something dangerous and will cause macrophages to promote inflammation. We discovered that it is then the regulatory T cells' responsibility to make the macrophages promote anti-inflammation to counteract the initial response, as it is not a real danger. This helps keep the immune system stable and prevents the body over-reacting to everything in its environment.

"However problems can occur with tumours, where many regulatory T cells promoting a strong anti-inflammatory response are present. Neutralising an inflammatory response in this scenario can cause the tumour to fall under the radar of the body's immune system and 'trick' it into believing that there is no problem.

"We hope to be able to use this new knowledge about the relationship between regulatory T cells and macrophages to find more effective treatments for tumours. Interestingly, we also hope to use the same knowledge to achieve the opposite result and block chronic inflammation such as that which occurs in rheumatoid arthritis."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: T cells inflammation macrophage regulatory tumour undetected

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>