Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prion fingerprints detected with glowing molecule

20.11.2007
An effective and sensitive new method for detecting and characterizing prions, the infectious compounds behind diseases like mad cow disease, is now being launched by researchers at Linköping University in Sweden, among other institutions.

Mad cow disease (BSE), which has caused the death of more than 200,000 cattle and 165 people in the U.K., has now abated. But other prion disorders are on the rise, and there is concern that new strains will infect humans. Prions are not readily transmittable from species to species, but once they have broken through the species barrier they can rapidly adapt and become contagious within the species. Intensive work is now underway to find new, more sensitive methods for detecting these potentially deadly protein structures and distinguish between various strains.

The method now being presented in the journal Nature Methods is based on a fluorescent molecule, a so-called conjugated polymer, which was developed at Linköping University.

The research team infected genetically identical laboratory mice with BSE, scrapie (which afflicts sheep), and CWD (chronic wasting disease or "mad elk disease," which is epidemic in the central U.S.) for several generations in a row. Gradually new strains of prions emerge, making the diseases more fatal to the mice. Tissue samples from mice were examined using the fluorescent molecule, which seeks out and binds with prions. This is signaled by a shift in color. By tweaking the molecule, the team has been able to get it to show different colors depending on the structure of the prion­each prion strain emits its own optical fingerprint.

... more about:
»Prion »method

This is an important difference compared with other techniques used to find prions, such as antibodies and the well-known stain Congo red.

The technique has also proven to work well on tissue sections from dead animals, such as cows infected with BSE. Now the scientists want to move on and look for alternative sample-taking methods for diagnosing and tracking prion diseases in humans in early stages.

The method would then be useful for screening blood products, since there is a risk that people can be carriers of prions without having any symptoms of disease. In the U.K. it was discovered that 66 people had received blood from blood donors who were infected with the human form of BSE (a variant of Creutzfeldt-Jakob's disease, vCJD), and among them, four individuals have been shown to be infected (source: Health Protection Agency, Jan. 2007).

"Using our methods, we can directly see the structure of the prions and thereby deduce the disease," says Peter Nilsson, one of the lead authors of the article. Nilsson developed the technique as a doctoral student at Linköping University and now, as a post-doctoral fellow with Professor Adrian Aguzzi's research team in Zürich, has been applying the technology to prion diseases. After New Year's he will assume a post-doc position at Linköping.

"For us researchers it is truly exciting to use this technique to understand more about both prions and other defectively folded proteins that give rise to similar disorders, such as Alzheimer's," says Peter Hammarström, co-author and research director of the prion laboratory at Linköping.

Another co-author is Kurt Wüthrich, the 2002 Nobel laureate in chemistry.

The article "Prion strain discrimination using luminescent conjugated polymers" by Christina J Sigurdson, K Peter R Nilsson, Simone Hornemann, Guiseppe Manco, Magdalini Polymenidou, Petra Schwartz, Mario Leclerc, Per Hammarström, Kurt Wüthrich, and Adriano Aguzzi was published in Nature Methods online on November 18 and will appear in the December issue of the printed journal.

Contact: Peter Nilsson, phone: +41 44 2553428, petni@ifm.liu.se
Per Hammarström, phone: +46 (0)13 285690, perha@ifm.liu.se
Pressofficer Åke Hjelm; +46-13 281395;ake.hjelm@liu.se

Åke Hjelm | idw
Further information:
http://www.nature.com/nmeth/journal/vaop/ncurrent/abs/nmeth1131.html
http://www.vr.se

Further reports about: Prion method

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>