Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optic Flow: A Step in The Right Direction

The way objects appear to stream by us as we move through the world is a phenomenon called optic flow. Think of the street signs and storefronts that sail across the car windshield as we drive. That’s optic flow in action. Brown University cognitive scientists have now shown, in research to be featured on the cover of Current Biology, that optic flow plays a critical role in continuously recalibrating our steps as we walk.

The motion we perceive with our eyes plays a critical role in guiding our feet as we move through the world, Brown University research shows.

The work was conducted in Brown’s Virtual Environment Navigation Lab, or VENLab, one of the largest virtual reality labs in the country. It appears online in Current Biology and will be featured on the journal’s Dec. 4, 2007, cover. The findings shed important new light on the phenomenon of optic flow, the perceived motion of visual objects that helps in judging distance and avoiding obstacles while walking, driving and even landing a plane.

Perception in action, or the intersection of how we see and how we move, is the focus of research in the laboratory of William Warren, chairman of Brown’s Department of Cognitive and Linguistic Sciences. In the VENLab, Warren and his team have studied optic flow by having human subjects wear virtual reality goggles and navigate through virtual obstacles in the darkened room.

... more about:
»Brain »Optic »Visual »walk

In 2001, the Warren lab showed for the first time that people use optic flow to help them steer toward a target as they walk. But what happens when you are standing still? If you are not walking and not getting the constant stream of visual information that optic flow provides, how do you begin moving toward a target? How do you know which way to direct your first step?

To get an answer to this question, the team created a virtual display that simulates a prism, bending light so that the visual scene shifts to one side. The target – in this case, a virtual doorway toward which subjects were told to walk – appeared to be farther to the right than it actually was. A total of 40 subjects ran through about 40 trials each, with everyone trying to walk through the virtual doorway while wearing the simulated prism. Half those subjects had optic flow, or a steady stream of visual information, available to them. The other half did not.

The researchers found that, on average, all 40 subjects missed the doorway by about five feet on the first few steps. But after a while, subjects adapted and were able to walk straight toward the doorway. Then the simulated prism was removed, and subjects were again asked to walk to the virtual doorway. Surprisingly, they all missed their mark on the opposite side because their brains and bodies had adapted to the prism. After a few tries, subjects quickly readjusted again and were able to walk straight to the doorway.

Hugo Bruggeman, a postdoctoral research fellow in the Warren lab who led the research, said the kicker came when they compared data from subjects who had optic flow available during the trials with data from those who did not. When subjects had optic flow, they took a straight path toward the doorway and made it, on average, in just three tries. When optic flow was eliminated, and subjects had only a lone target to aim for, it took an average of 20 tries before they walked straight to the target.

“With optic flow, it is easier to walk in the right direction,” Bruggeman said. “Subjects adapted seven times faster. This suggests that with a continuous flow of visual information, your brain allows you to rapidly and accurately adapt your direction of walking. So we’re constantly recalibrating our movements and our actions based on information such as optic flow.”

This finding could have practical applications, particularly in robotics, where it can be used to produce machines with more accurate guidance capabilities. But Warren said the real value of the work rests with the deeper scientific principle it points up.

“We tend to think that the structures of the brain dictate how we perceive and act in the world,” Warren said. “But this work shows that the world also influences the structures of the brain. It’s a loop. The organization in the brain must reflect the organization and information in the world. And this is a universal principle. All animals that move use optic flow to navigate. So whether you’re a fly landing on a leaf or a pilot landing on a runway, you may be using the same source of sensory information to carry out your task.”

Wendy Zosh, a graduate student in the Department of Cognitive and Linguistic Sciences, also assisted in the research.

The National Eye Institute funded the work.

Wendy Lawton | EurekAlert!
Further information:

Further reports about: Brain Optic Visual walk

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>