Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new view on sensing, movement, and behavioral control in animals

13.11.2007
While most animals, including humans, preferentially sense and move toward objects that are in front of them, an electric fish from the Amazon called the black ghost knifefish can swim backward or forward to catch its prey.

In a new study published online this week in the open-access journal PLoS Biology, James Snyder and colleagues at Northwestern University investigate the relationship between the energetic costs of the knifefish’s active sensing system—which requires far more energy than passive sensing—and the area over which the animal senses its prey.

They propose that the energetic constraints of the knifefish’s active sensing system leads to a restricted sensory space compared to passive-sensing animals.

By combining video analysis of prey capture behavior with computational modeling of the fish’s electrosensory capabilities, the scientists were able to quantify and compare the 3D volumes for sensation and movement for the first time in any animal. They found that the sensory volume (the size and shape of the space within which objects can be detected by an animal) overlaps the motor volume (the location in space that an animal can reach within a set time period). They suggest that this coupling may arise from constraints that the animal faces when using self-generated energy to probe its environment. They also suggest that the degree of overlap between sensory and movement volumes can provide insight into the types of control strategies that are best suited for guiding behavior.

... more about:
»Animal »behavior »movement »sensing »volume

Citation: Snyder JB, Nelson ME, Burdick JW, MacIver MA (2007) Omnidirectional sensory and motor volumes in electric fish. PLoS Biol 5(11): e301. doi:10.1371/journal.pbio.0050301

•Caption: A computer model of the knifefish illustrates the estimated SV for active sensing of prey (red) and stopping MV (blue). The backdrop shows a color map of the fish’s simulated self-generated electric field. SV barely exceeds the stopping MV, revealing that the fish invests just enough energy into active sensing to detect prey in time to stop. (Image: MacIver et al.)

CONTACT:
Malcolm MacIver
Northwestern University
2145 Sheridan Rd, Tech B224
Evanston, IL 60208-3111
+1-847-491-3540
+1-847-556-0173 (fax)
maciver@northwestern.edu

Andrew Hyde | alfa
Further information:
http://biology.plosjournals.org/perlserv/?request=getdocument&doi=10.1371/journal.pbio.0050301

Further reports about: Animal behavior movement sensing volume

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>