Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging neural progenitor cells in the living human brain

12.11.2007
For the first time, investigators have identified a way to detect neural progenitor cells (NPCs), which can develop into neurons and other nervous system cells, in the living human brain using a type of imaging called magnetic resonance spectroscopy (MRS). The finding, supported by the National Institutes of Health (NIH), may lead to improved diagnosis and treatment for depression, Parkinson's disease, brain tumors, and a host of other disorders.

Research has shown that, in select brain regions, NPCs persist into adulthood and may give rise to new neurons. Studies have suggested that the development of new neurons from NPCs, called neurogenesis, is disrupted in disorders ranging from depression and schizophrenia to Parkinson's disease, epilepsy, and cancer. Until now, however, there has been no way to monitor neurogenesis in the living human brain.

"The recent finding that neural progenitor cells exist in adult human brain has opened a whole new field in neuroscience. The ability to track these cells in living people would be a major breakthrough in understanding brain development in children and continued maturation of the adult brain. It could also be a very useful tool for research aimed at influencing NPCs to restore or maintain brain health," says Walter J. Koroshetz, M.D., deputy director of the NIH's National Institute of Neurological Disorders and Stroke (NINDS), which helped fund the work. The study was also funded by the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

"This is the first noninvasive approach to identify neural progenitor cells in the human brain," says Grigori Enikolopov, Ph.D., of Cold Spring Harbor Laboratory in New York, who conducted the new study along with co-corresponding author Mirjana Maletic-Savatic, M.D., Ph.D., of the State University of New York, Stony Brook and their colleagues at SUNY Stony Brook and Brookhaven National Laboratory. MRS is an imaging technique that can be used to detect proteins and other compounds normally present in body fluids or tissues. The study results are published in the November 9, 2007, issue of Science.*

... more about:
»Brain »Human »Living »MRS »NPC »human brain »neural »progenitor

Previously developed techniques using positron emission tomography and other types of brain imaging allow investigators to identify NPCs in animals. However, those techniques require pre-labeling the cells with radioactive agents or magnetic nanoparticles – strategies that are not practical in people. In the new study, the researchers identified an innate property of NPCs that can be detected by MRS. This enables them to image NPCs without introducing drugs or other agents.

The researchers used a technique related to MRS to compare the signals of NPCs from embryonic mice to those of neurons, astrocytes, and oligodendrocytes. Astrocytes and oligodendrocytes are non-neuronal cells that are very common in the brain. The investigators found that NPCs showed a specific signal, or marker, that was not as common in other cell types.

Next, the researchers studied NPCs at various points as they differentiated into other cell types in the laboratory. The level of the NPC signal decreased over time, while the levels of other markers common in neurons and astrocytes rose. The newly identified marker was more common in brain cells from embryonic mice than in those from adult mice. It also was more common in cells from the mouse hippocampus, a region where neurogenesis occurs constantly, than in cells from the brain's cortex, where new neurons are not normally formed.

Dr. Maletic-Savatic, Dr. Enikolopov and their colleagues then gave adult mice a form of electrical stimulation that increases the amount of neurogenesis in the brain. They found that the marker they had identified increased significantly after the stimulation. Additional results indicated that the marker is probably a mixture of lipids (fatty acids), although the exact identity of the lipids, and how they function in NPCs, is still undetermined.

The researchers then developed a signal processing method that allowed them to separate the marker from other signals in the living brain. They transplanted NPCs into the cortex of the adult rat brain and found that they could clearly detect the marker in the area where the NPCs were injected. They also found that it increased after stimulation.

Finally, the investigators tested their MRS imaging technique in healthy people. They found major differences in the concentration of the marker between the hippocampus and the cortex. They also imaged the brains of pre-adolescents, adolescents, and adults and found that the marker decreased with age.

The findings suggest that the marker identified in these experiments can be used to detect NPCs and neurogenesis in the live human brain using MRS. They also show that NPCs decrease during brain development. Previous research had shown that neurogenesis decreases with age in animals, but this is the first study to demonstrate that it also decreases in the living human brain.

"This study identifies a novel biomarker and shows that we can use it to see progenitor cells in the live brain," Dr. Enikolopov says. "This protocol can now be used to study a variety of problems." For example, researchers might study people with depression to see if neurogenesis correlates with alterations in depression or schizophrenia. The technique might also be used to study changes that occur in neurological diseases such as traumatic brain injury, stroke, epilepsy, and Parkinson's disease. It might even be useful for detecting cancer, because researchers believe some brain tumors are associated with aberrant proliferation of NPCs, Dr. Enikolopov adds.

The researchers are now planning studies that will test the usefulness of the new imaging technique in people with disease. They also hope to improve their understanding of how the lipids they detected function in NPCs and to refine the sensitivity of their technique.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov/
http://www.niddk.nih.gov
http://www.nih.gov

Further reports about: Brain Human Living MRS NPC human brain neural progenitor

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>