Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging neural progenitor cells in the living human brain

12.11.2007
For the first time, investigators have identified a way to detect neural progenitor cells (NPCs), which can develop into neurons and other nervous system cells, in the living human brain using a type of imaging called magnetic resonance spectroscopy (MRS). The finding, supported by the National Institutes of Health (NIH), may lead to improved diagnosis and treatment for depression, Parkinson's disease, brain tumors, and a host of other disorders.

Research has shown that, in select brain regions, NPCs persist into adulthood and may give rise to new neurons. Studies have suggested that the development of new neurons from NPCs, called neurogenesis, is disrupted in disorders ranging from depression and schizophrenia to Parkinson's disease, epilepsy, and cancer. Until now, however, there has been no way to monitor neurogenesis in the living human brain.

"The recent finding that neural progenitor cells exist in adult human brain has opened a whole new field in neuroscience. The ability to track these cells in living people would be a major breakthrough in understanding brain development in children and continued maturation of the adult brain. It could also be a very useful tool for research aimed at influencing NPCs to restore or maintain brain health," says Walter J. Koroshetz, M.D., deputy director of the NIH's National Institute of Neurological Disorders and Stroke (NINDS), which helped fund the work. The study was also funded by the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

"This is the first noninvasive approach to identify neural progenitor cells in the human brain," says Grigori Enikolopov, Ph.D., of Cold Spring Harbor Laboratory in New York, who conducted the new study along with co-corresponding author Mirjana Maletic-Savatic, M.D., Ph.D., of the State University of New York, Stony Brook and their colleagues at SUNY Stony Brook and Brookhaven National Laboratory. MRS is an imaging technique that can be used to detect proteins and other compounds normally present in body fluids or tissues. The study results are published in the November 9, 2007, issue of Science.*

... more about:
»Brain »Human »Living »MRS »NPC »human brain »neural »progenitor

Previously developed techniques using positron emission tomography and other types of brain imaging allow investigators to identify NPCs in animals. However, those techniques require pre-labeling the cells with radioactive agents or magnetic nanoparticles – strategies that are not practical in people. In the new study, the researchers identified an innate property of NPCs that can be detected by MRS. This enables them to image NPCs without introducing drugs or other agents.

The researchers used a technique related to MRS to compare the signals of NPCs from embryonic mice to those of neurons, astrocytes, and oligodendrocytes. Astrocytes and oligodendrocytes are non-neuronal cells that are very common in the brain. The investigators found that NPCs showed a specific signal, or marker, that was not as common in other cell types.

Next, the researchers studied NPCs at various points as they differentiated into other cell types in the laboratory. The level of the NPC signal decreased over time, while the levels of other markers common in neurons and astrocytes rose. The newly identified marker was more common in brain cells from embryonic mice than in those from adult mice. It also was more common in cells from the mouse hippocampus, a region where neurogenesis occurs constantly, than in cells from the brain's cortex, where new neurons are not normally formed.

Dr. Maletic-Savatic, Dr. Enikolopov and their colleagues then gave adult mice a form of electrical stimulation that increases the amount of neurogenesis in the brain. They found that the marker they had identified increased significantly after the stimulation. Additional results indicated that the marker is probably a mixture of lipids (fatty acids), although the exact identity of the lipids, and how they function in NPCs, is still undetermined.

The researchers then developed a signal processing method that allowed them to separate the marker from other signals in the living brain. They transplanted NPCs into the cortex of the adult rat brain and found that they could clearly detect the marker in the area where the NPCs were injected. They also found that it increased after stimulation.

Finally, the investigators tested their MRS imaging technique in healthy people. They found major differences in the concentration of the marker between the hippocampus and the cortex. They also imaged the brains of pre-adolescents, adolescents, and adults and found that the marker decreased with age.

The findings suggest that the marker identified in these experiments can be used to detect NPCs and neurogenesis in the live human brain using MRS. They also show that NPCs decrease during brain development. Previous research had shown that neurogenesis decreases with age in animals, but this is the first study to demonstrate that it also decreases in the living human brain.

"This study identifies a novel biomarker and shows that we can use it to see progenitor cells in the live brain," Dr. Enikolopov says. "This protocol can now be used to study a variety of problems." For example, researchers might study people with depression to see if neurogenesis correlates with alterations in depression or schizophrenia. The technique might also be used to study changes that occur in neurological diseases such as traumatic brain injury, stroke, epilepsy, and Parkinson's disease. It might even be useful for detecting cancer, because researchers believe some brain tumors are associated with aberrant proliferation of NPCs, Dr. Enikolopov adds.

The researchers are now planning studies that will test the usefulness of the new imaging technique in people with disease. They also hope to improve their understanding of how the lipids they detected function in NPCs and to refine the sensitivity of their technique.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov/
http://www.niddk.nih.gov
http://www.nih.gov

Further reports about: Brain Human Living MRS NPC human brain neural progenitor

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>