Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oregon team zeroes in on RNA-binding in myotonic dystrophy

Study helps to determine normal functioning, giving clues to how disease state happens

University of Oregon researchers have shed new light on the function of an RNA-regulating protein known as muscleblind, which when it misbehaves and binds to rogue RNA can lead to disease affecting roughly one in 8,000 people.

The study, which used a combination of biochemical, biophysical and cell culture studies, was placed online ahead of regular publication in the December issue of the journal RNA. When the findings were initially presented in September at the annual meeting of the Myotonic Dystrophy Foundation in Italy, the work garnered a $1,000 cash prize for outstanding research for lead author Bryan Warf, a UO doctoral student.

Misbehaving RNA can lead to myotonic dystrophy, an inherited condition that affects muscles and other body systems. It is the most commonly occurring form of adult onset muscular dystrophy with progressive muscle wasting as well as a variety of symptoms. An early symptom is the inability of muscles to relax after a simple handshake or gripping of a doorknob. It also can lead to cataracts, cardiac arrhythmia, insulin resistance and male infertility. It can be life-threatening in cases of early onset, particularly in children. Researchers believe that the numbers of a specific type of nucleotide expansions in a person's DNA gives rise to myotonic dystrophy.

... more about:
»MBNL »RNA »dystrophy »myotonic »structure »toxic

The UO findings apply to both known forms: DM1, which can manifest at any point in life, from birth to late 60s; and DM2, which more commonly surfaces in adulthood. While independent genes are responsible in each form, the same protein's interaction with RNA in the genes is implicated in both diseases.

"In a simplistic view, this disease is about this protein not functioning properly," Warf said. "So we've been trying to see what this protein does normally to keep us healthy and promote healthy development."

In their study, Warf and Andy Berglund, professor of chemistry and member of the Institute of Molecular Biology, focused on the RNA-splicing protein muscleblind-like (MBNL) and its interactions with both normal strands of RNA and disease-causing RNA that contains mismatched pairs of repeat nucleotides. RNA (ribonucleic acid) is much like translation software, a driver that serves as a messenger between DNA and proteins.

"Toxic RNA," as Berglund describes the mutated strands in the genome, is like a sentence that contains many extra misplaced copies of the word "the" within it. In their paper, Warf and Berglund found that MBNL binds to both normal and toxic forms of RNA. When bound to the toxic versions, MBNL ignores its other RNA targets and does not help process them normally, leading to disease. In earlier work, Berglund's lab solved the crystal structure of the toxic RNA.

In this new study, Warf and Berglund tested MBNL's interactions with both normal RNA and toxic RNA. They found that muscleblind has no preference for a toxic RNA that contains any type of pyrimidine-pyrimidine mismatch. Warf and Berglund were the first to articulate the structure of one of MBNL’s normal RNA targets. It had been thought that the structure of the toxic RNA was much different than the structure of a normal RNA target for MBNL, but Warf and Berglund showed that the two structures are actually quite similar.

"Through his studies," Berglund said, "Bryan has provided insight into how muscleblind may normally function. The dogma was that this protein was recognizing a complex structure in the toxic RNA, and normally it was recognizing a more simple RNA structure in regulating splicing. Bryan found the RNA that is normally recognized actually adopts a structure that looks a lot like the toxic RNA. Muscleblind recognizes both. The diseased RNA is mimicking the natural RNA."

Jim Barlow | EurekAlert!
Further information:

Further reports about: MBNL RNA dystrophy myotonic structure toxic

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>