Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon team zeroes in on RNA-binding in myotonic dystrophy

09.11.2007
Study helps to determine normal functioning, giving clues to how disease state happens

University of Oregon researchers have shed new light on the function of an RNA-regulating protein known as muscleblind, which when it misbehaves and binds to rogue RNA can lead to disease affecting roughly one in 8,000 people.

The study, which used a combination of biochemical, biophysical and cell culture studies, was placed online ahead of regular publication in the December issue of the journal RNA. When the findings were initially presented in September at the annual meeting of the Myotonic Dystrophy Foundation in Italy, the work garnered a $1,000 cash prize for outstanding research for lead author Bryan Warf, a UO doctoral student.

Misbehaving RNA can lead to myotonic dystrophy, an inherited condition that affects muscles and other body systems. It is the most commonly occurring form of adult onset muscular dystrophy with progressive muscle wasting as well as a variety of symptoms. An early symptom is the inability of muscles to relax after a simple handshake or gripping of a doorknob. It also can lead to cataracts, cardiac arrhythmia, insulin resistance and male infertility. It can be life-threatening in cases of early onset, particularly in children. Researchers believe that the numbers of a specific type of nucleotide expansions in a person's DNA gives rise to myotonic dystrophy.

... more about:
»MBNL »RNA »dystrophy »myotonic »structure »toxic

The UO findings apply to both known forms: DM1, which can manifest at any point in life, from birth to late 60s; and DM2, which more commonly surfaces in adulthood. While independent genes are responsible in each form, the same protein's interaction with RNA in the genes is implicated in both diseases.

"In a simplistic view, this disease is about this protein not functioning properly," Warf said. "So we've been trying to see what this protein does normally to keep us healthy and promote healthy development."

In their study, Warf and Andy Berglund, professor of chemistry and member of the Institute of Molecular Biology, focused on the RNA-splicing protein muscleblind-like (MBNL) and its interactions with both normal strands of RNA and disease-causing RNA that contains mismatched pairs of repeat nucleotides. RNA (ribonucleic acid) is much like translation software, a driver that serves as a messenger between DNA and proteins.

"Toxic RNA," as Berglund describes the mutated strands in the genome, is like a sentence that contains many extra misplaced copies of the word "the" within it. In their paper, Warf and Berglund found that MBNL binds to both normal and toxic forms of RNA. When bound to the toxic versions, MBNL ignores its other RNA targets and does not help process them normally, leading to disease. In earlier work, Berglund's lab solved the crystal structure of the toxic RNA.

In this new study, Warf and Berglund tested MBNL's interactions with both normal RNA and toxic RNA. They found that muscleblind has no preference for a toxic RNA that contains any type of pyrimidine-pyrimidine mismatch. Warf and Berglund were the first to articulate the structure of one of MBNL’s normal RNA targets. It had been thought that the structure of the toxic RNA was much different than the structure of a normal RNA target for MBNL, but Warf and Berglund showed that the two structures are actually quite similar.

"Through his studies," Berglund said, "Bryan has provided insight into how muscleblind may normally function. The dogma was that this protein was recognizing a complex structure in the toxic RNA, and normally it was recognizing a more simple RNA structure in regulating splicing. Bryan found the RNA that is normally recognized actually adopts a structure that looks a lot like the toxic RNA. Muscleblind recognizes both. The diseased RNA is mimicking the natural RNA."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: MBNL RNA dystrophy myotonic structure toxic

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>