Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are There Rearrangement Hotspots In The Human Genome?

09.11.2007
The debate over the validity of genomic rearrangement “hotspots” has its most recent addition in a new theory put forth by researchers at the University of California San Diego. The study, published on November 9 in PLoS Computational Biology, holds that there are indeed rearrangement hotspots in the human genome

Doctors Max Alekseyev and Pavel Pevzner developed a theory for analyzing complex rearrangements (including transpositions) which demonstrates that even if transpositions were a dominant evolutionary force, there are still rearrangement hotspots in mammalian genomes.

In 1970 the random breakage model (RBM) was proposed by Susumo Ohno, and later formalized by Nadeau and Taylor in 1984. This model postulates that rearrangements are “random,” and thus there are no rearrangement hotspots in mammalian genomes. Biologists largely embraced the model as it held such predictive powers.

However, in 2003 the model was refuted by Pevzner and Tesler, who suggested an alternative fragile breakage model (FBM) of chromosome evolution. FBM implies that the human genome is a mosaic of solid regions with low propensity for rearrangements and fragile regions where rearrangement hotspots reside. The rebuttal of RBM resulted in a rebuttal of the rebuttal, and a scientific divide was begun.

... more about:
»FBM »Genome »RBM »rearrangement

Most recent studies support the existence of rearrangement hotspots, but some researchers still uphold the RBM model. This study represents a major advance in the debate.

CITATION: Alekseyev MA, Pevzner PA (2007) Are there rearrangement hotspots in the human genome? PLoS Comput Biol 3(11): e209. doi:10.1371/journal.pcbi.0030209

CONTACT:

Max Alekseyev
(858)-534-5932
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404
maxal@cs.ucsd.edu
Pavel Pevzner
(858)-822-4365
Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, Mail Code 0404
La Jolla, CA 92039-0404
ppevzner@cs.ucsd.edu
PLoS Contact:
Mary Kohut
(415)-568-3460
Public Library of Science
mkohut@plos.org

Andrew Hyde | alfa
Further information:
http://compbiol.org
http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030209

Further reports about: FBM Genome RBM rearrangement

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>