Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are There Rearrangement Hotspots In The Human Genome?

09.11.2007
The debate over the validity of genomic rearrangement “hotspots” has its most recent addition in a new theory put forth by researchers at the University of California San Diego. The study, published on November 9 in PLoS Computational Biology, holds that there are indeed rearrangement hotspots in the human genome

Doctors Max Alekseyev and Pavel Pevzner developed a theory for analyzing complex rearrangements (including transpositions) which demonstrates that even if transpositions were a dominant evolutionary force, there are still rearrangement hotspots in mammalian genomes.

In 1970 the random breakage model (RBM) was proposed by Susumo Ohno, and later formalized by Nadeau and Taylor in 1984. This model postulates that rearrangements are “random,” and thus there are no rearrangement hotspots in mammalian genomes. Biologists largely embraced the model as it held such predictive powers.

However, in 2003 the model was refuted by Pevzner and Tesler, who suggested an alternative fragile breakage model (FBM) of chromosome evolution. FBM implies that the human genome is a mosaic of solid regions with low propensity for rearrangements and fragile regions where rearrangement hotspots reside. The rebuttal of RBM resulted in a rebuttal of the rebuttal, and a scientific divide was begun.

... more about:
»FBM »Genome »RBM »rearrangement

Most recent studies support the existence of rearrangement hotspots, but some researchers still uphold the RBM model. This study represents a major advance in the debate.

CITATION: Alekseyev MA, Pevzner PA (2007) Are there rearrangement hotspots in the human genome? PLoS Comput Biol 3(11): e209. doi:10.1371/journal.pcbi.0030209

CONTACT:

Max Alekseyev
(858)-534-5932
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404
maxal@cs.ucsd.edu
Pavel Pevzner
(858)-822-4365
Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, Mail Code 0404
La Jolla, CA 92039-0404
ppevzner@cs.ucsd.edu
PLoS Contact:
Mary Kohut
(415)-568-3460
Public Library of Science
mkohut@plos.org

Andrew Hyde | alfa
Further information:
http://compbiol.org
http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030209

Further reports about: FBM Genome RBM rearrangement

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>