Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop micro Petri dish for massively parallel growth and screening of micro-organisms

09.11.2007
Scientists of Top Institute Food & Nutrition, Wageningen University and Research Centre, NIZO food research and the MESA+ Institute for Nanotechnology in the Netherlands have developed a new technology that allows unprecedented miniaturisation of the growth of micro-organisms.

On a chip with the size of a postage stamp, more than one million cultures can be grown in parallel which opens up a wide range of uses from diagnosis of infection to the improvement of industrial bacteria. The corresponding paper ‘The micro Petri dish, a million-well chip for the culture and high-throughput screening of microorganisms’ has been published in Proceedings of the National Academy of Science (online Early Edition) on 7th November 2007.

A team of microbiologists and micro-engineering experts developed the chip that has the potential to meet the automation and miniaturisation needs of modern microbiology. The development of high-throughput bacterial screening methods has been slow in an era of advancements in fields like genomics and proteomics. The ‘micro Petri dish’ allows growth assays to catch up with other high-throughput technologies in the life sciences. ‘Besides that, the chip is readily manufactured, cheap and easy-to-use in a standard microbiology lab’ explain researchers Colin Ingham (WUR) and Johan van Hylckama Vlieg (NIZO).

The innovation is in the micro-engineering of a unique porous ceramic to create millions of wells that serve as growth areas for micro-organisms. The micron-scale wells of the chip can be regarded as an array of millions of “micro Petri dishes”, where bacteria or yeasts are efficiently supplied with nutrients from below through a porous membrane. By using this chip, assays for the detection and growth of micro-organisms will become faster and cheaper whilst it permits larger screening operations for improved industrial strains than have been possible to date.

TI Food and Nutrition (www.tifn.nl) is a unique public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in the development of innovative products and technologies that respond to consumer demands for safe, tasty and healthy foods. 'This project, a close collaboration between biotechnologists and nanotechnologists, is a good example of the trans-disciplinary approach we have developed', says Jan Sikkema, programme director at Top Institute Food and Nutrition.

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: Micro Petri dish Screening develop micro-organisms

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>