Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop micro Petri dish for massively parallel growth and screening of micro-organisms

09.11.2007
Scientists of Top Institute Food & Nutrition, Wageningen University and Research Centre, NIZO food research and the MESA+ Institute for Nanotechnology in the Netherlands have developed a new technology that allows unprecedented miniaturisation of the growth of micro-organisms.

On a chip with the size of a postage stamp, more than one million cultures can be grown in parallel which opens up a wide range of uses from diagnosis of infection to the improvement of industrial bacteria. The corresponding paper ‘The micro Petri dish, a million-well chip for the culture and high-throughput screening of microorganisms’ has been published in Proceedings of the National Academy of Science (online Early Edition) on 7th November 2007.

A team of microbiologists and micro-engineering experts developed the chip that has the potential to meet the automation and miniaturisation needs of modern microbiology. The development of high-throughput bacterial screening methods has been slow in an era of advancements in fields like genomics and proteomics. The ‘micro Petri dish’ allows growth assays to catch up with other high-throughput technologies in the life sciences. ‘Besides that, the chip is readily manufactured, cheap and easy-to-use in a standard microbiology lab’ explain researchers Colin Ingham (WUR) and Johan van Hylckama Vlieg (NIZO).

The innovation is in the micro-engineering of a unique porous ceramic to create millions of wells that serve as growth areas for micro-organisms. The micron-scale wells of the chip can be regarded as an array of millions of “micro Petri dishes”, where bacteria or yeasts are efficiently supplied with nutrients from below through a porous membrane. By using this chip, assays for the detection and growth of micro-organisms will become faster and cheaper whilst it permits larger screening operations for improved industrial strains than have been possible to date.

TI Food and Nutrition (www.tifn.nl) is a unique public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in the development of innovative products and technologies that respond to consumer demands for safe, tasty and healthy foods. 'This project, a close collaboration between biotechnologists and nanotechnologists, is a good example of the trans-disciplinary approach we have developed', says Jan Sikkema, programme director at Top Institute Food and Nutrition.

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: Micro Petri dish Screening develop micro-organisms

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>