Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extracts of catfish caught in polluted waters cause breast cancer cells to multiply

08.11.2007
Exposing estrogen-sensitive breast cancer cells to extracts of channel catfish caught in areas with heavy sewer and industrial waste causes the cells to multiply, according to a University of Pittsburgh study being presented at the annual meeting of the American Public Health Association in Washington, D.C.

The abstract, number 159141, will be presented at a special session on “Contaminants in Freshwater Fish: Toxicity, Sources and Risk Communication,” at 8:30 a.m., Wednesday, Nov. 7.

The study, which tested extracts from channel catfish caught in the Allegheny and Monongahela rivers near Pittsburgh, suggests that the fish, caught in areas of dense sewer overflows, contain substances that mimic the actions of estrogen, the female hormone. Since fish are sentinels of water quality, as the canary in the coal mine is a sentinel of air pollution, and can concentrate fat soluble chemicals from their habitats within their bodies, these results suggest that pharmaceutical estrogens and xeno-estrogenic chemicals, those that mimic estrogens in the body, may be making their way into the region’s waterways.

“We believe there are vast quantities of pharmaceutical and xeno-estrogenic waste in outflows from sewage treatment plants and from sewer overflows, and that these chemicals end up concentrated and magnified in channel catfish from contaminated areas,” said Conrad D. Volz, Dr.P.H., M.P.H., principal investigator, department of environmental and occupational health, University of Pittsburgh Graduate School of Public Health. Sewer overflows result from inadequate sewer infrastructure, which releases raw, untreated sewage directly into area rivers during wet weather, according to Dr. Volz. “In Pittsburgh alone, 16 billion gallons of raw, untreated sewage are deposited into area rivers every year with major implications for public health.”

... more about:
»Cancer »breast »catfish »caught »cause »multiply

In the study, Dr. Volz and colleagues exposed extracts of catfish to estrogen-responsive and estrogen non-responsive human breast cancer cells. They found that catfish extracts caused the estrogen-responsive breast cancer cells to multiply by binding to and activating estrogen receptors – the proteins within cells that render the cells sensitive to estrogen – but had no effect on the estrogen negative cell line. Extracts of fish caught in areas heavily polluted by industrial and municipal wastes resulted in the greatest amount of cell growth. This growth occurred regardless of the sex of the fish.

According to Dr. Volz, the next step in this research is to identify the specific estrogenic chemicals and their sources in the local water and fish. “These findings have significant public health implications, since we drink water from the rivers where the fish were caught. Additionally, the consumption of river-caught fish, especially by semi-subsistence anglers, may increase their risks for endocrine-related health issues and developmental problems,” said Dr. Volz.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Cancer breast catfish caught cause multiply

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>