Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extracts of catfish caught in polluted waters cause breast cancer cells to multiply

08.11.2007
Exposing estrogen-sensitive breast cancer cells to extracts of channel catfish caught in areas with heavy sewer and industrial waste causes the cells to multiply, according to a University of Pittsburgh study being presented at the annual meeting of the American Public Health Association in Washington, D.C.

The abstract, number 159141, will be presented at a special session on “Contaminants in Freshwater Fish: Toxicity, Sources and Risk Communication,” at 8:30 a.m., Wednesday, Nov. 7.

The study, which tested extracts from channel catfish caught in the Allegheny and Monongahela rivers near Pittsburgh, suggests that the fish, caught in areas of dense sewer overflows, contain substances that mimic the actions of estrogen, the female hormone. Since fish are sentinels of water quality, as the canary in the coal mine is a sentinel of air pollution, and can concentrate fat soluble chemicals from their habitats within their bodies, these results suggest that pharmaceutical estrogens and xeno-estrogenic chemicals, those that mimic estrogens in the body, may be making their way into the region’s waterways.

“We believe there are vast quantities of pharmaceutical and xeno-estrogenic waste in outflows from sewage treatment plants and from sewer overflows, and that these chemicals end up concentrated and magnified in channel catfish from contaminated areas,” said Conrad D. Volz, Dr.P.H., M.P.H., principal investigator, department of environmental and occupational health, University of Pittsburgh Graduate School of Public Health. Sewer overflows result from inadequate sewer infrastructure, which releases raw, untreated sewage directly into area rivers during wet weather, according to Dr. Volz. “In Pittsburgh alone, 16 billion gallons of raw, untreated sewage are deposited into area rivers every year with major implications for public health.”

... more about:
»Cancer »breast »catfish »caught »cause »multiply

In the study, Dr. Volz and colleagues exposed extracts of catfish to estrogen-responsive and estrogen non-responsive human breast cancer cells. They found that catfish extracts caused the estrogen-responsive breast cancer cells to multiply by binding to and activating estrogen receptors – the proteins within cells that render the cells sensitive to estrogen – but had no effect on the estrogen negative cell line. Extracts of fish caught in areas heavily polluted by industrial and municipal wastes resulted in the greatest amount of cell growth. This growth occurred regardless of the sex of the fish.

According to Dr. Volz, the next step in this research is to identify the specific estrogenic chemicals and their sources in the local water and fish. “These findings have significant public health implications, since we drink water from the rivers where the fish were caught. Additionally, the consumption of river-caught fish, especially by semi-subsistence anglers, may increase their risks for endocrine-related health issues and developmental problems,” said Dr. Volz.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Cancer breast catfish caught cause multiply

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>