Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Massive project reveals shortcomings of modern genome analysis

The sequencing and comparison of 12 fruit fly genomes -- the result of a massive collaboration of hundreds of scientists from more than 100 institutions in 16 countries -- has thrust forward researchers' understanding of fruit flies, a popular animal model in science. But even human genome biologists may want to take note: The project also has revealed considerable flaws in the way they identify genes.

"We've made huge progress in recent years with many genomes, including humans, but a lot of the problems can't be solved by simply dumping data into a computer and having truth and light come out the other end," said Indiana University Bloomington biologist Thomas Kaufman, who co-led the project. "One of the things we've learned from this project is that when you compare a lot of different but related genomes, you are more likely to see the genes that are buried in all that A-C-T-G mush."

Two papers in this week's Nature separately report the results of the four-year genome project and use the data to draw some conclusions about the fruit fly genus Drosophila, particularly its star species, the human nuisance Drosophila melanogaster. Among the papers' conclusions is the idea that resolving any individual species' genome is greatly enhanced when related genomes are compared to it. The project was primarily funded by the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health.

More than 40 "companion" manuscripts are being published or are in press, each of which examines a different aspect of the data produced by the Drosophila 12 Genomes Consortium.

... more about:
»Drosophila »Genome »RNA »species

"This remarkable scientific achievement underscores the value of sequencing and comparing many closely-related species, especially those with great potential to enhance our understanding of fundamental biological processes," said Francis S. Collins, director of NHGRI. "Thanks to the consortium's hard work, scientists around the world now have a rich new source of genomic data that can be mined in many different ways and applied to other important model systems as well as humans."

The consortium purposely chose a wide variety of fruit flies for study, guessing correctly that both gene similarities and differences among the 12 species would be easier to identify. Some of the Drosophila species the scientists studied are closely related to D. melanogaster, some not. Some of the flies fulfill very specialized ecological niches, such as D. sechellia, which has evolved a unique ability to detoxify the fruit of the Seychelles' noni tree. The other 10 species the consortium examined were D. pseudoobscura, D. simulans, D. yakuba, D. erecta, D. ananassae, D. persimilis, D. willistoni, D. virilis, D. grimshawi, and the cactus-loving D. mojavensis. D. melanogaster's genome was published in 2000 and D. pseudoobscura's genome was published in 2005. The other genomes are newly published.

In comparing the 12 genomes, the scientists found 1,193 new protein-coding genes and hundreds of new functional elements, including regulatory sequences that determine how quickly genes are expressed, and genes that encode functional RNAs such as small nuclear RNAs. They also learned certain genes appear to be evolving faster than others, such as the genes associated with smell and taste, sex and reproduction, and defenses against pathogens.

The Drosophila 12 Genomes Consortium found that D. melanogaster shares about 77 percent of its genes with the other 11 species they studied. The scientists also found errors in about 3 percent of previously sequenced D. melanogaster protein-coding genes, correcting 414 gene sequences on record.

A vexing problem for genomicists is finding genes and other important DNA sequences in heterochromatin, tightly packed areas of chromosomes presumed to experience little expression. Heterochromatin is common in animal genomes.

"The heterochromatin is very hard to analyze," Kaufman said. "Studies show heterochromatin changes the most. It's full of intermediate- and full-repeat sequences. And there are genes buried in this stuff."

The conventions for locating the genes that encode proteins are pretty well established. The lingering problem for genomics biologists is locating genes whose parts are interrupted repeatedly, as well as locating genes that do not code for proteins.

By comparing a huge number of genomes, these sorts of genes are relatively easy to locate. Genes that do important things for cells or tissues are more likely to be "conserved" over time; that is, they don't change much despite millions of years of mutations.

One of the companion pieces accompanying this week's Nature papers was written by IUB computational biologist Matthew Hahn. Hahn reports in PLoS Genetics that although all 12 Drosophila species have about the same number of genes (14,000), the genomes are more dynamic than one might expect.

"The highest turnover in gene number occurs in genes involved in sex and reproduction," Hahn said. "Our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this evolutionary revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species. This is the reason the 12 species only share 77 percent of their genes."

David Bricker | EurekAlert!
Further information:

Further reports about: Drosophila Genome RNA species

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>