Enzyme regulates brain pathology induced by cocaine, stress

In studies with mice they showed how chronic cocaine changes gene activity to enhance the addictive reward from the drug. And they showed similarly how chronic stress induces the same kinds of changes that hypersensitizes the brain, causing depression-like symptoms.

The researchers said their basic finding in the animals could lead to better treatments for addiction, depression and other psychiatric disorders.

Eric Nestler and colleagues published their findings in the November 8, 2007, issue of the journal Neuron, published by Cell Press.

In their experiments, the researchers explored how chronic cocaine or stress exerts “epigenetic” control of genes in the brain. Such control involves repressing or activating genes by altering the structure of the chromatin that enwraps genes. Specifically, the researchers explored whether chronic cocaine or stress affect an enzyme called histone deacetylase 5 (HDAC5). Normally, HDAC5 represses specific genes by removing molecules called acetyl groups from the histone proteins that make up the chromatin surrounding them. The researchers’ previous studies had shown that chronic cocaine administration in mice caused an increase in acetyl groups in a brain region called the nucleus accumbens (NAc), known to be involved in response to cocaine or stress.

The researchers’ studies showed that giving mice chronic cocaine led to a reduction in HDAC5, allowing some 172 genes to be activated. What’s more, they found that this loss of HDAC5 in the NAc made the mice more sensitive to the reward of chronic cocaine. They determined the animals’ reward-sensitivity to cocaine by measuring the mice’s preference for an area of a box that they were taught to associate with receiving cocaine.

The researchers also studied whether the animals’ adaptation to chronic stress involved HDAC5 levels. In these experiments, they exposed mice to aggressive mice and measured the resulting depressive behavior. The researchers found that such stress also reduced HDAC5 function, although through a different mechanism than for chronic cocaine.

“These data demonstrate a crucial role for HDAC5 in regulating behavioral adaptations to chronic stress as well as chronic cocaine and suggest that HDAC5 contributes to a molecular switch between acute stress responses and more long-lasting depression-like maladaptations,” wrote the researchers.

“The functions of HDAC5 described here provide new insight into the pathogenesis of drug addiction, depression, and other stress-related syndromes,” they wrote. “This fundamentally new insight into the molecular underpinnings of chronic maladaptation in brain could lead to the development of improved treatments for addiction, depression, and other chronic psychiatric disorders.”

Media Contact

Cathleen Genova EurekAlert!

More Information:

http://www.cell.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors