Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme regulates brain pathology induced by cocaine, stress

08.11.2007
Researchers have uncovered a key genetic switch that chronic cocaine or stress influences to cause the brain to descend into a pathological state.

In studies with mice they showed how chronic cocaine changes gene activity to enhance the addictive reward from the drug. And they showed similarly how chronic stress induces the same kinds of changes that hypersensitizes the brain, causing depression-like symptoms.

The researchers said their basic finding in the animals could lead to better treatments for addiction, depression and other psychiatric disorders.

Eric Nestler and colleagues published their findings in the November 8, 2007, issue of the journal Neuron, published by Cell Press.

... more about:
»Brain »HDAC5 »Stress »cocaine

In their experiments, the researchers explored how chronic cocaine or stress exerts “epigenetic” control of genes in the brain. Such control involves repressing or activating genes by altering the structure of the chromatin that enwraps genes. Specifically, the researchers explored whether chronic cocaine or stress affect an enzyme called histone deacetylase 5 (HDAC5). Normally, HDAC5 represses specific genes by removing molecules called acetyl groups from the histone proteins that make up the chromatin surrounding them. The researchers’ previous studies had shown that chronic cocaine administration in mice caused an increase in acetyl groups in a brain region called the nucleus accumbens (NAc), known to be involved in response to cocaine or stress.

The researchers’ studies showed that giving mice chronic cocaine led to a reduction in HDAC5, allowing some 172 genes to be activated. What’s more, they found that this loss of HDAC5 in the NAc made the mice more sensitive to the reward of chronic cocaine. They determined the animals’ reward-sensitivity to cocaine by measuring the mice’s preference for an area of a box that they were taught to associate with receiving cocaine.

The researchers also studied whether the animals’ adaptation to chronic stress involved HDAC5 levels. In these experiments, they exposed mice to aggressive mice and measured the resulting depressive behavior. The researchers found that such stress also reduced HDAC5 function, although through a different mechanism than for chronic cocaine.

“These data demonstrate a crucial role for HDAC5 in regulating behavioral adaptations to chronic stress as well as chronic cocaine and suggest that HDAC5 contributes to a molecular switch between acute stress responses and more long-lasting depression-like maladaptations,” wrote the researchers.

“The functions of HDAC5 described here provide new insight into the pathogenesis of drug addiction, depression, and other stress-related syndromes,” they wrote. “This fundamentally new insight into the molecular underpinnings of chronic maladaptation in brain could lead to the development of improved treatments for addiction, depression, and other chronic psychiatric disorders.”

Cathleen Genova | EurekAlert!
Further information:
http://www.cell.com

Further reports about: Brain HDAC5 Stress cocaine

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>