Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To fight disease, animals, like plants, can tolerate parasites

08.11.2007
Animals, like plants, can build tolerance to infections at a genetic level, and these findings could provide a better understanding of the epidemiology and evolution of infectious disease, according to evolutionary biologists.

Plant pathologists have long known that plants deal with parasites by either developing resistance to the bugs, or by becoming more tolerant to disease. So plants that are tolerant do not get sick as fast as plants that are not tolerant, even when the number of parasites is doubled.

"Think of an aircraft carrier under enemy fire," said Andrew Read, professor of biology and entomology at Penn State, the Eberly College of Science Distinguished Senior Scholar and an associate of the University’s Center for Infectious Disease Dynamics. "Resistance is trying to repel the incoming shells before they hit." Tolerance, he added, is the number of shells the carrier can withstand before keeling over.

Read and his colleagues Lars Raberg, assistant professor at the University of Lund, and Derek Sim, senior research assistant at Penn State, used the same approach to study tolerance in animals.

... more about:
»Disease »Malaria »Plants »animals »parasite »tolerance

They exposed five different strains of mice to malaria, and monitored the rate at which the mice lost weight and red blood cells, a common feature of malarial infections.

The team found that the number of days it took for the parasites to reach peak density – when parasite numbers are at a maximum – differed in the five mouse strains, indicating varying levels of resistance.

When the researchers analyzed density of red blood cells and minimum weight against the peak density of parasites, they found that as the parasites increased, some mice got sicker more slowly than the others.

"This was the one big a-ha moment, suggesting to us that disease tolerance was at work," said Read, whose findings appear on Nov. 2 in the journal Science.

Researchers were also surprised to find that tolerance and resistance are negatively related. The mice can either kill parasites or tolerate them, but they cannot do both.

Resistance and tolerance are both part of an evolutionary game plan that plants and animals adopt in response to infections, says the Penn State researcher. And in both cases, there is a trade-off.

Resistant hosts are successful in preventing disease but over time the bugs learn to beat them, forcing the hosts to build a stronger resistance. It is a never-ending arms race, noted Read, whose work is funded by the Wellcome Trust and the Swedish Research Council.

"But in the case of tolerance, the host is no longer trying to harm the pathogen, and the arms race stops," he added. Plants and animals simply learn to live with the pathogens.

The Penn State researcher cautions against generalizing the findings but points out that results from the study will provide a better picture of the progression of disease in animals.

While it is not yet clear whether one is better than the other, researchers say that an understanding of disease tolerance and disease resistance could help in picking optimal selection strategies in the breeding of agricultural animals.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu
http://www.cidd.psu.edu/

Further reports about: Disease Malaria Plants animals parasite tolerance

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>