Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To fight disease, animals, like plants, can tolerate parasites

08.11.2007
Animals, like plants, can build tolerance to infections at a genetic level, and these findings could provide a better understanding of the epidemiology and evolution of infectious disease, according to evolutionary biologists.

Plant pathologists have long known that plants deal with parasites by either developing resistance to the bugs, or by becoming more tolerant to disease. So plants that are tolerant do not get sick as fast as plants that are not tolerant, even when the number of parasites is doubled.

"Think of an aircraft carrier under enemy fire," said Andrew Read, professor of biology and entomology at Penn State, the Eberly College of Science Distinguished Senior Scholar and an associate of the University’s Center for Infectious Disease Dynamics. "Resistance is trying to repel the incoming shells before they hit." Tolerance, he added, is the number of shells the carrier can withstand before keeling over.

Read and his colleagues Lars Raberg, assistant professor at the University of Lund, and Derek Sim, senior research assistant at Penn State, used the same approach to study tolerance in animals.

... more about:
»Disease »Malaria »Plants »animals »parasite »tolerance

They exposed five different strains of mice to malaria, and monitored the rate at which the mice lost weight and red blood cells, a common feature of malarial infections.

The team found that the number of days it took for the parasites to reach peak density – when parasite numbers are at a maximum – differed in the five mouse strains, indicating varying levels of resistance.

When the researchers analyzed density of red blood cells and minimum weight against the peak density of parasites, they found that as the parasites increased, some mice got sicker more slowly than the others.

"This was the one big a-ha moment, suggesting to us that disease tolerance was at work," said Read, whose findings appear on Nov. 2 in the journal Science.

Researchers were also surprised to find that tolerance and resistance are negatively related. The mice can either kill parasites or tolerate them, but they cannot do both.

Resistance and tolerance are both part of an evolutionary game plan that plants and animals adopt in response to infections, says the Penn State researcher. And in both cases, there is a trade-off.

Resistant hosts are successful in preventing disease but over time the bugs learn to beat them, forcing the hosts to build a stronger resistance. It is a never-ending arms race, noted Read, whose work is funded by the Wellcome Trust and the Swedish Research Council.

"But in the case of tolerance, the host is no longer trying to harm the pathogen, and the arms race stops," he added. Plants and animals simply learn to live with the pathogens.

The Penn State researcher cautions against generalizing the findings but points out that results from the study will provide a better picture of the progression of disease in animals.

While it is not yet clear whether one is better than the other, researchers say that an understanding of disease tolerance and disease resistance could help in picking optimal selection strategies in the breeding of agricultural animals.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu
http://www.cidd.psu.edu/

Further reports about: Disease Malaria Plants animals parasite tolerance

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>