Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the function of enzymes

08.11.2007
Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the door for new targets for drug designs.

Texas A&M researcher Frank Raushel is part of a team of scientists who modified a technique called “molecular docking” to predict which molecule, called a substrate, triggers an enzyme into action, enabling them to decipher an enzyme’s function based on its structure alone.

The team’s paper was published in the journal Nature.

Most biological processes depend on enzymes, which are proteins that speed up chemical reactions, but the function of many enzymes remains a mystery.

... more about:
»docking »enzyme »function

“There are thousands of molecules that could be substrates [for a specific enzyme], and it would take too long to physically test them all,” Raushel said. “So we decided there was a need for a new method to determine the function of enzymes.”

The team started with the three-dimensional X-ray structure of an enzyme and then used a computer to try to fit different smaller molecules into the active site of the enzyme like pieces in a puzzle.

“Each enzyme has a specific size and shape,” Raushel said, “and you can use a computer to take small molecules and fit them into the active site of an enzyme one by one and score them on how well they fit. It’s more or less like fitting a key into a lock, but a lot more difficult since both the enzyme and the substrate are conformationally flexible.”

After the computer scores the molecules on how well they fit the enzyme, it ranks their order, and the researchers can then use the prioritized list to decide which molecules to physically test.

“As far as we know, this is the first time anybody has used molecular docking to predict the function of an enzyme,” Raushel said. “And it was verified by both experiment and X-ray crystallography.”

Other methods researchers use to try to determine an enzyme’s function or substrate specificity include physically testing thousands of possible molecules, gathering information from the nearby genes, and comparing the structure of the enzyme to that of other enzymes with known functions. “I think that in the end, we’ll have to use all of these methods together,” Raushel said. “One single method just won’t suffice.”

Raushel and his team plan to continue using their molecular docking method to find the function of other enzymes.

“We’re looking at other X-ray structures of proteins that have unknown functions, and we’re working to fill the gap,” Raushel said. “We’re trying to see how general this method is going to be or if we were just lucky in this particular case.”

Raushel and Texas A&M post-doctoral associate Ricardo Marti-Arbona work in conjunction with Brian Shoichet at the University of California, San Francisco, and Steven Almo from the Albert Einstein College of Medicine in New York.

Raushel hopes that over the next five years, the team can start to use its findings to locate potential targets for new drugs.

“Understanding the substrate specificity of certain enzymes could allow researchers to differentiate enzymes that catalyze one reaction in pathogenic organisms and a slightly different reaction in human systems,” Raushel said. “This would allow scientists to design [drugs] that would specifically target a pathogenic organism while not affecting the human enzyme.”

Amelia Williamson | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: docking enzyme function

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>