Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemoglobin uncovered

08.11.2007
Researchers at the BSC and the IRB Barcelona unveil crucial information about the protein transporter of oxygen, which opens up the possibility to optimize its function by introducing modifications. The study is published in the scientific journal Proceedings of the National Academy of Sciences.

The transport of oxygen in blood is undertaken by hemoglobin, the largest component of red blood cells. This protein collects oxygen in respiratory organs, mainly in the lungs, and releases it in tissues in order to generate the energy necessary for cell survival. Hemoglobin is one of the most refined proteins because its evolution and small mutations in its structure can produce anaemia and other severe pathologies.

The investigation led by Víctor Guallar, ICREA researcher with the Life Sciences department of the Barcelona Supecomputing Center (BSC) and group leader of the Joint Computational Biology Programme between the Institute for Research in Biomedicine (IRB Barcelona) and the BSC, has allowed the definition at atomic level of the mechanism that regulates the exchange of lung oxygen to hemoglobin and from hemoglobin to tissue. The results of this study are published in the journal Proceedings of the National Academy of Sciences.

More than a hundred years of study have led to the knowledge that hemoglobin uses mechanisms of cooperativity to optimize its function; that is to say, to collect the greatest amount of oxygen possible in the lungs and release it in tissues. These mechanisms of cooperativity are related to changes in the structure of the hemoglobin protein. However, due to the complexity of the system, until now it has not been possible to determine the microscopic mechanisms that guide this process. Consequently, this lack of information has been a serious limitation in drug design and the development of artificial forms that are more effective than the protein.

... more about:
»blood »hemoglobin »mechanism

Víctor Guallar explains that "this study has provided detailed knowledge of the mechanisms that regulate the affinity of hemoglobin, which is crucial to understand, for example, the effects caused by mutations on its structure. Thus, we have obtained basic data on the relation between mutation and disease, which will allow the development of more specific treatments".

Using sophisticated atomic calculation techniques, which combine quantum and classical mechanics, Guallar’s team has determined how, against what was commonly accepted, the affinity for oxygen appears to be controlled by interactions that are relatively distant from the active centre of the protein and that are directly involved in the structural changes responsible for cooperativity. Raúl Alcantara, first author of the study and a member of Guallar’s group points out that "having access to the enormous calculation capacity of the MaresNostrum supercomputer allows more precise simulations, which are closer to what happens in real life".

The results of this study open up vast possibilities for the engineering of this crucial protein. Having identified the factors that regulate the affinity of hemoglobin, alterations of its structure can now be designed. Likewise, the microscopic knowledge about the mechanisms of action of haemoglobin will improve our understanding of the effects of diverse mutations of this protein.

Reference article:
A quantum-chemical picture of hemoglobin affinity
R. E. Alcantara, C. Xu, T. G. Spiro, and V. Guallar.
Proc. Nac. Academy of Sciences USA (2007) (doi 10.1073/pnas.0706206104)

Sonia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

Further reports about: blood hemoglobin mechanism

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>