Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemoglobin uncovered

08.11.2007
Researchers at the BSC and the IRB Barcelona unveil crucial information about the protein transporter of oxygen, which opens up the possibility to optimize its function by introducing modifications. The study is published in the scientific journal Proceedings of the National Academy of Sciences.

The transport of oxygen in blood is undertaken by hemoglobin, the largest component of red blood cells. This protein collects oxygen in respiratory organs, mainly in the lungs, and releases it in tissues in order to generate the energy necessary for cell survival. Hemoglobin is one of the most refined proteins because its evolution and small mutations in its structure can produce anaemia and other severe pathologies.

The investigation led by Víctor Guallar, ICREA researcher with the Life Sciences department of the Barcelona Supecomputing Center (BSC) and group leader of the Joint Computational Biology Programme between the Institute for Research in Biomedicine (IRB Barcelona) and the BSC, has allowed the definition at atomic level of the mechanism that regulates the exchange of lung oxygen to hemoglobin and from hemoglobin to tissue. The results of this study are published in the journal Proceedings of the National Academy of Sciences.

More than a hundred years of study have led to the knowledge that hemoglobin uses mechanisms of cooperativity to optimize its function; that is to say, to collect the greatest amount of oxygen possible in the lungs and release it in tissues. These mechanisms of cooperativity are related to changes in the structure of the hemoglobin protein. However, due to the complexity of the system, until now it has not been possible to determine the microscopic mechanisms that guide this process. Consequently, this lack of information has been a serious limitation in drug design and the development of artificial forms that are more effective than the protein.

... more about:
»blood »hemoglobin »mechanism

Víctor Guallar explains that "this study has provided detailed knowledge of the mechanisms that regulate the affinity of hemoglobin, which is crucial to understand, for example, the effects caused by mutations on its structure. Thus, we have obtained basic data on the relation between mutation and disease, which will allow the development of more specific treatments".

Using sophisticated atomic calculation techniques, which combine quantum and classical mechanics, Guallar’s team has determined how, against what was commonly accepted, the affinity for oxygen appears to be controlled by interactions that are relatively distant from the active centre of the protein and that are directly involved in the structural changes responsible for cooperativity. Raúl Alcantara, first author of the study and a member of Guallar’s group points out that "having access to the enormous calculation capacity of the MaresNostrum supercomputer allows more precise simulations, which are closer to what happens in real life".

The results of this study open up vast possibilities for the engineering of this crucial protein. Having identified the factors that regulate the affinity of hemoglobin, alterations of its structure can now be designed. Likewise, the microscopic knowledge about the mechanisms of action of haemoglobin will improve our understanding of the effects of diverse mutations of this protein.

Reference article:
A quantum-chemical picture of hemoglobin affinity
R. E. Alcantara, C. Xu, T. G. Spiro, and V. Guallar.
Proc. Nac. Academy of Sciences USA (2007) (doi 10.1073/pnas.0706206104)

Sonia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

Further reports about: blood hemoglobin mechanism

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>