Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian researchers develop treatment to treat obesity

07.11.2007
A team of researchers from the St Vincent’s Campus in Sydney have developed a novel way to control the extreme weight loss, common in late stage cancer, which often speeds death.

The findings, published in Nature Medicine, suggest it may soon be possible to prevent this condition, giving people the strength to survive treatment and improve their chances of recovery.

The team of researchers from the Centre for Immunology at St Vincent’s Hospital and the University of New South Wales and the Garvan Institute of Medical Research have shown that most common cancers produce large amounts of a molecule known as MIC-1, which in turn targets receptors in the brain that switch off appetite. Antibodies against MIC-1, already developed by St Vincent’s, make it possible to switch appetite back on.

Conversely, when normal and obese mice are treated with MIC-1, they eat less and lose a lot of weight, suggesting that MIC-1 may also form the basis of a treatment for severe obesity.

... more about:
»MIC-1 »Treatment »develop »obesity »treat

Professor Sam Breit at the Centre for Immunology originally cloned the MIC-1 gene. He discovered that blood levels of MIC-1 were high in many patients with advanced cancers, and correlated this with the extreme weight loss seen in these patients.

In a collaboration with Professor Herbert Herzog, Director of the Neuroscience Research Program at Garvan they then analysed the effect of this molecule on metabolism and the brain control of appetite.

“This work has given us a better understanding of the part of the brain that regulates appetite. Our bodies send complex chemical signals to our brains, which interpret them and send back responses, in this case ‘eat’ or ‘don’t eat’. Our research indicated that MIC-1 is a previously unrecognised molecule sending a ‘don’t eat’ signal to the brain,” said Professor Herzog.

The study showed that if a human cancer making a lot of MIC-1 is grafted onto a mouse, that mouse lost weight dramatically. When the researchers injected that mouse with an antibody that ‘mopped up’ MIC-1, the weight loss was reversed. In effect, they rescued the mouse from the excessive influence of MIC-1.

It is hoped that in the near future, the MIC-1 findings will prevent a sizeable proportion of advanced cancer patients from literally wasting away. The team from St. Vincent’s Hospital hope to develop a human antibody and run clinical trials in the next few years.

Professor Breit who, since discovering the MIC-1 gene in the 1990s, has conducted several internationally published studies relating to the gene’s influence on coronary disease, miscarriage and cancer. He now believes the findings could also have a significant impact on a range of appetite-related disorders.

“Injecting mice with MIC-1 protein also made them stop eating, suggesting that it may be possible to use this to advantage for treating patients with severe obesity,” he said.

Susi Hamilton | EurekAlert!
Further information:
http://www.unsw.edu.au

Further reports about: MIC-1 Treatment develop obesity treat

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>