Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy genes may cancel each other

06.11.2007
Inheriting two genetic mutations that can individually cause epilepsy might actually be “seizure-protective,” said Baylor College of Medicine researchers in a report that appears online today in the journal Nature Neuroscience.

“In the genetics of the brain, two wrongs can make a right,” said Dr. Jeffrey L. Noebels, professor of neurology, neuroscience and molecular and human genetics at BCM. “We believe these findings have great significance to clinicians as we move toward relying upon genes to predict neurological disease.”

In addition, the finding might point the way to new ways of treating epilepsy using gene-directed therapy.

“If you have a potassium channel defect, then a drug blocking certain calcium channels might also benefit you,” said Noebels.

... more about:
»Channel »Epilepsy »Genetic »potassium »seizure

Noebels and his colleagues, who included first author Dr. Ed Glasscock, a post-doctoral researcher at BCM, tested this hypothesis by breeding mice with two defective genes that govern ion channels, tiny pores in cells that allow molecules such as potassium and calcium to flow in and out.

The genes were known to cause epilepsy when inherited singly within families. They have also been found in a large-scale screen of people with non-familial seizure disorders being performed in collaboration with the Baylor Human Genome Sequencing Center.

One is a mutation in the Kcna1 gene involved in the channel that allows potassium to flow in and out of the cell. It causes severe seizures affecting the brain’s temporal lobe, an area of the brain involved in processing sight, sound, speech and forming memories. It can also cause sudden death in young mice.

The other mutation is in a calcium channel gene (Cacna1a) that causes a specific type of seizure associated with absence epilepsy. When people suffer these seizures, they may appear to be staring into space and do not exhibit the jerking or movements generally associated with epilepsy.

When both types of mutation occurred in the same young mouse, that animal had dramatically reduced seizures and did not suffer the sudden death associated with the potassium channel problem.

Noebels, who is also director of the Developmental Neurogenetics Laboratory funded by the National Institutes of Health and Blue Bird Circle Foundation, said, “Rather than screening for ‘bad’ genes one at a time, it may be essential to create a complete profile of many or even all genes in order to accurately assess the true genetic risk of any single defect in many common disorders such as epilepsy. Fortunately, this amount of background information will soon become routinely obtainable in individual patients thanks to rapid technological progress in the field of neurogenomics.”

Many different genes can lead to seizure disorders. In some cases, they encode ion channels that adjust the way neurons fire. Previous work indicated that combinations of such genes could make epilepsy worse. However, certain combinations may actually prevent the abnormal patterns of epilepsy, acting as “circuit breakers,” said Noebels.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/neuro/index.html

Further reports about: Channel Epilepsy Genetic potassium seizure

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>