Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy genes may cancel each other

06.11.2007
Inheriting two genetic mutations that can individually cause epilepsy might actually be “seizure-protective,” said Baylor College of Medicine researchers in a report that appears online today in the journal Nature Neuroscience.

“In the genetics of the brain, two wrongs can make a right,” said Dr. Jeffrey L. Noebels, professor of neurology, neuroscience and molecular and human genetics at BCM. “We believe these findings have great significance to clinicians as we move toward relying upon genes to predict neurological disease.”

In addition, the finding might point the way to new ways of treating epilepsy using gene-directed therapy.

“If you have a potassium channel defect, then a drug blocking certain calcium channels might also benefit you,” said Noebels.

... more about:
»Channel »Epilepsy »Genetic »potassium »seizure

Noebels and his colleagues, who included first author Dr. Ed Glasscock, a post-doctoral researcher at BCM, tested this hypothesis by breeding mice with two defective genes that govern ion channels, tiny pores in cells that allow molecules such as potassium and calcium to flow in and out.

The genes were known to cause epilepsy when inherited singly within families. They have also been found in a large-scale screen of people with non-familial seizure disorders being performed in collaboration with the Baylor Human Genome Sequencing Center.

One is a mutation in the Kcna1 gene involved in the channel that allows potassium to flow in and out of the cell. It causes severe seizures affecting the brain’s temporal lobe, an area of the brain involved in processing sight, sound, speech and forming memories. It can also cause sudden death in young mice.

The other mutation is in a calcium channel gene (Cacna1a) that causes a specific type of seizure associated with absence epilepsy. When people suffer these seizures, they may appear to be staring into space and do not exhibit the jerking or movements generally associated with epilepsy.

When both types of mutation occurred in the same young mouse, that animal had dramatically reduced seizures and did not suffer the sudden death associated with the potassium channel problem.

Noebels, who is also director of the Developmental Neurogenetics Laboratory funded by the National Institutes of Health and Blue Bird Circle Foundation, said, “Rather than screening for ‘bad’ genes one at a time, it may be essential to create a complete profile of many or even all genes in order to accurately assess the true genetic risk of any single defect in many common disorders such as epilepsy. Fortunately, this amount of background information will soon become routinely obtainable in individual patients thanks to rapid technological progress in the field of neurogenomics.”

Many different genes can lead to seizure disorders. In some cases, they encode ion channels that adjust the way neurons fire. Previous work indicated that combinations of such genes could make epilepsy worse. However, certain combinations may actually prevent the abnormal patterns of epilepsy, acting as “circuit breakers,” said Noebels.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/neuro/index.html

Further reports about: Channel Epilepsy Genetic potassium seizure

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>