Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ripe Fruit Preferred

06.11.2007
Chlorophyll breakdown in ripening apples and pears produces highly active antioxidants

Fall, the season of colors: Leaves turn red, yellow, and brown. The disappearance of the color green and the simultaneous appearance of these other colors are also signs of ripening fruit. A team led by Bernhard Kräutler at the University of Innsbruck (Austria) has now determined that the breakdown of chlorophyll in ripening apples and pears produces the same decomposition products as those in brightly colored leaves. As the researchers report in the journal Angewandte Chemie, these colorless decomposition products, called nonfluorescing chlorophyll catabolytes (NCC), are highly active antioxidants—making them potentially very healthy.

The beautifully colored leaves of fall are a sign of leaf senescence, the programmed cell death in plants. This process causes the disappearance of chlorophyll, which is what gives leaves their green color. For a long time, no one really knew just what happens to the chlorophyll in this process. In recent years, Kräutler and his team, working with the Zurich botanists Philippe Matile and Stefan Hörtensteiner, have been able to identify the first decomposition products: colorless, polar NCCs that contain four pyrrole rings—like chlorophyll and heme.

Now the Innsbruck researchers have examined the peels of apples and pears. Unripe fruits are green because of their chlorphyll. In ripe fruits, NCCs have replaced the chlorophyll, especially in the peel and the flesh immediately below it. These catabolytes are the same for apples and pears, and are also the same as those found in the leaves of the fruit trees. “There is clearly one biochemical pathway for chlorophyll decomposition in leaf senescence and fruit ripening,” concludes Kräutler.

... more about:
»FRUIT »NCC »antioxidants »decomposition »leaves »ripening

When chlorophyll is released from its protein complexes in the decomposition process, it has a phototoxic effect: When irradiated with light, it absorbs energy and can transfer it to other substances. For example, it can transform oxygen into a highly reactive, destructive form. As the researchers were able to demonstrate, the NCCs have an opposite effect: They are powerful antioxidants and can thus play an important physiological role for the plant. It then became apparent that NCCs are components of the diets of humans and other higher animals, and that they could thus also play a role in their systems. Other previously identified important antioxidants in the peels of fruits include the flavonoids. Thus, the saying, “an apple a day keeps the doctor away” seems to be true, according to Kräutler.

Author: Bernhard Kräutler, Universität Innsbruck (Austria), http://pc43-c726.uibk.ac.at/oci/people/en_bernhard_kraeutler.html

Title: Colorless Tetrapyrrolic Chlorophyll Catabolites in Ripening Fruit Are Effective Antioxidants

Angewandte Chemie International Edition 2007, 46, No. 45, 8699–8702, doi: 10.1002/anie.200703587

Bernhard Kräutler | Angewandte Chemie
Further information:
http://pc43-c726.uibk.ac.at/oci/people/en_bernhard_kraeutler.html
http://pressroom.angewandte.org

Further reports about: FRUIT NCC antioxidants decomposition leaves ripening

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>