Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case Western Reserve researchers breed a mighty mouse

05.11.2007
During research designed to study PEPCK-C enzyme

Case Western Reserve University researchers have bred a line of “mighty mice” (PEPCK-Cmus mice) that have the capability of running five to six kilometers at a speed of 20 meters per minute on a treadmill for up to six hours before stopping.

“They are metabolically similar to Lance Armstrong biking up the Pyrenees; they utilize mainly fatty acids for energy and produce very little lactic acid,” said Richard W. Hanson, the Leonard and Jean Skeggs Professor of Biochemistry at Case Western Reserve and the senior author of the cover article that appeared in the Journal of Biological Chemistry, entitled “Over Expression of the Cytosolic Form of Phosphoenolpyruvate Carboxykinase (GTP) in Skeletal Muscle Repatterns Energy Metabolism in the Mouse.”

These genetically engineered mice also eat 60 percent more than controls, but remain fitter, trimmer and live and breed longer than wild mice in a control group. Some female PEPCK-Cmus mice have had offspring at 2.5 years of age, an amazing feat considering most mice do not reproduce after they are one year old. According to Hanson, the key to this remarkable alteration in energy metabolism is the over-expression of the gene for the enzyme phospheonolpyruvate carboxykinase (PEPCK-C).

... more about:
»Mouse »PEPCK-C »lactate »skeletal muscle

Parvin Hakimi, the article’s lead author and a researcher in the Hanson lab, developed this new line of PEKCK-C mice over the past five years as part of on-going research aimed at understanding the metabolic and physiological function of PEPCK-C in skeletal muscle and adipose tissue.

The transgenic mice, which now number nearly 500, were derived from six founder lines that contain a chimeric gene in which a copy of the cDNA for PEPCK-C was linked to the skeletal actin gene promoter, containing the 3’-end of the bovine growth hormone gene. The skeletal actin gene promoter directs expression of PEPCK-C exclusively to skeletal muscle. Various lines of PEPCK-Cmus mice expressed PEPCK-C at different levels, but one very active line of PEPCK-Cmus mice had levels of PEPCK-C activity of 9 units/gram skeletal muscle, compared to only 0.08 units/gram in the muscles of control animals.

It was evident from the beginning that these mice were very different from average mice. Hakimi commented, “From a very early age, the PEPCK-Cmus mice ran continuously in their cages.” She said she could identify which mice were from this new line by simply watching their level of activity in their home cage.

Animal behavior studies later demonstrated that the PEPCK-Cmus mice are seven times more active in their home cages than controls; in addition, the mice were also markedly more aggressive. “The enhanced level of activity noted in the PEPCK-Cmus mice extends well beyond two years of age; this is considered old-age for mice,” the researchers said.

As part of this study, the researchers determined oxygen consumption, the production of carbon dioxide and changes in the lactate concentrations in the blood of the PEPCK-Cmus mice and controls during strenuous exercises on a treadmill, which was set at a 25-degree incline. The treadmill speed was increased by 2m/min every minute until the mice stopped running. The PEPCK-Cmus mice ran an average of 31.9 minutes, compared to 19 minutes for the control animals.

“What is particularly dramatic is the difference in the concentrations of lactate in the blood,” the researchers said. “At the beginning of exercise, the concentration of lactate was similar in two groups of mice, but by the end of the exercise period, the control group had elevated levels of blood lactate with little change in the levels in the PEPCK-Cmus mice.”

They added that this indicates that the PEPCK-Cmus mice relied heavily on fatty acids as a source of energy during exercise, while the control animals rapidly switched from fatty acid metabolism to using muscle glycogen (carbohydrates) as a fuel; this dramatically raised the blood lactate levels.

This new mouse line also has an increased content of mitochondria and high concentrations of triglycerides in their skeletal muscles, which also contributed to the increased metabolic rate and longevity of the animals.

“It is remarkable that the over-expression of a single enzyme involved in a metabolic pathway should result in such a profound alteration in the phenotype of the mouse,” Hakimi and Hanson said. “Understanding the biochemical mechanisms responsible for this repatterning of energy metabolism will keep us busy for some time to come.”

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu
http://blog.case.edu/case-news/2007/10/26/mouse.mov

Further reports about: Mouse PEPCK-C lactate skeletal muscle

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>