Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree-climbing with dinosaurs

25.04.2002


Most mammals of this vintage are known only by their teeth.
© Nature


Fossil find hints at life of one of our earliest mammalian forebears.

A mouse-sized fossil from 125 million years ago is the earliest known member of the mammal group that includes humans, say researchers.

The animal is a primitive example of today’s dominant mammals. "It’s at the very root of this diverse and incredibly important group," says palaeontologist Zhe-Xi Luo of the Carnegie Museum of Natural History in Pittsburgh1.



The mammal, Eomaia scansoria, might have scampered up a tree as a feathered dinosaur ran past. The animal’s elongated digits suggest that it was adept at climbing; its name translates as ’dawn-mother climber’.

Luo and his colleagues discovered Eomaia in China. Its skeleton is exceptionally well preserved, and the fossil shows its dense fur. Most mammals of a similar vintage are known only by their teeth.

Eomaia’s teeth and ankle-bones mark it out as a member of the group called the Eutheria, rather than a marsupial or one of the egg-laying group called monotremes.

But Eomaia probably lacked a placenta, and would have reproduced in a similar way to modern marsupials. Its hips are too narrow to give birth to large young; its babies would have been born at an early stage of development and clung to their mother for shelter and nourishment.

Eomaia was discovered in a fossil lakebed. When it lived, the surrounding landscape would have been lush and densely vegetated. The animal’s teeth suggest that it ate insects, and it may have led a shrew-like life in bushes and trees.

Treasure trove

The rocks that hold Eomaia are a fossil treasure trove, containing many beautifully preserved animals, including feathered dinosaurs. There are also other mammals, ranging from beasts smaller than Eomaia to a predator slightly larger than a domestic cat. These other species seem to have been less well adapted for climbing.

"What’s so cool is that we’re beginning to get some sense of how these animals lived together," says palaeontologist Anne Weil of Duke University in Durham, North Carolina. Although, she warns, reconstructing fossils’ lives is "a bit of a guessing game".

Mammals were already a diverse group by this stage, adds palaeontologist Jerry Hooker of the Natural History Museum, London. "We must go back further to look for even older eutherians," to truly understand the evolution of early mammals, he says.

Fossils suggest that there were seven mammal lineages present at his time - our ancestors would have been "just another face in the crowd", says Weil. But only three of these groups survive today. Three died out while dinosaurs still roamed, the fourth about 35 million years ago.

Early marsupials - another lineage that survived and thrived - seem also to have been tree dwellers. An ability to climb might have given them, like Eomaia, the edge over their contemporaries, Weil suggests.

References
  1. Ji, Q. et al. The earliest eutherian mammal. Nature, 416, 816 - 822, (2002).


JOHN WHITFIELD | © Nature News Service

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>